• Title/Summary/Keyword: Feature-extraction

Search Result 2,582, Processing Time 0.027 seconds

Vulnerability Assessment of a Large Sized Power System Using Neural Network Considering Various Feature Extraction Methods

  • Haidar, Ahmed M. A;Mohamed, Azah;Hussian, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 2008
  • Vulnerability assessment of power systems is important so as to determine their ability to continue to provide service in case of any unforeseen catastrophic contingency such as power system component failures, communication system failures, human operator error, and natural calamity. An approach towards the development of on-line power system vulnerability assessment is by means of using an artificial neural network(ANN), which is being used successfully in many areas of power systems because of its ability to handle the fusion of multiple sources of data and information. An important consideration when applying ANN in power system vulnerability assessment is the proper selection and dimension reduction of training features. This paper aims to investigate the effect of using various feature extraction methods on the performance of ANN as well as to evaluate and compare the efficiency of the proposed feature extraction method named as neural network weight extraction. For assessing vulnerability of power systems, a vulnerability index based on power system loss is used and considered as the ANN output. To illustrate the effectiveness of ANN considering various feature extraction methods for vulnerability assessment on a large sized power system, it is verified on the IEEE 300-bus test system.

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

Patterns Recognition Using Translation-Invariant Wavelet Transform (위치이동에 무관한 웨이블릿 변환을 이용한 패턴인식)

  • Kim, Kuk-Jin;Cho, Seong-Won;Kim, Jae-Min;Lim, Cheol-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.281-286
    • /
    • 2003
  • Wavelet Transform can effectively represent the local characteristics of a signal in the space-frequency domain. However, the feature vector extracted using wavelet transform is not translation invariant. This paper describes a new feature extraction method using wavelet transform, which is translation-invariant. Based on this translation-invariant feature extraction, the iris recognition method, based on this feature extraction method, is robust to noises. Experimentally, we show that the proposed method produces super performance in iris recognition.

Gesture Extraction for Ubiquitous Robot-Human Interaction (유비쿼터스 로봇과 휴먼 인터액션을 위한 제스쳐 추출)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1062-1067
    • /
    • 2005
  • This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.

Implementation of a Feature Extraction Chip for High Speed OCR (고속 문자 인식을 위한 특정 추출용 칩의 구현)

  • 김형구;강선미;김덕진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.104-110
    • /
    • 1994
  • We proposed a high speed feature extraction algorithm and developed a feature vector extraction chip for high speed character recognition. It is hard to implement a high speed OCR by software alone with statistical method . Thus, the whole recognition process is divided into functional steps, then pipeline processed so that high speed processing is possible with temporal parallelism of the steps. In this paper we discuss the feature extraction step of the functional steps. To extract feature vector, a character image is normalized to 40$\times$40 pixels. Then, it is divided into 5$\times$5 subregions and 4x4 subregions to construct 41 overlapped subregions(10x10 pixels). It requires to execute more than 500 commands to extract a feature vector of a subregion by software. The proposed algorithm, however, requires only 10 cycles since it can extract a feature vector of a columm of subregion in one cycle with array structure. Thus, it is possible to process 12.000 characters per second with the proposed algorithm. The chip is implemented using EPLD and the effectiveness is proved by developing an OCR using it.

  • PDF

A Study on On-line Recognition System of Korean Characters (온라인 한글자소 인식시스템의 구성에 관한 연구)

  • Choi, Seok;Kim, Gil-Jung;Huh, Man-Tak;Lee, Jong-Hyeok;Nam, Ki-Gon;Yoon, Tae-Hoon;Kim, Jae-Chang;Lee, Ryang-Seong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.94-105
    • /
    • 1993
  • In this paper propose a Koaren character recognition system using a neural network is proposed. This system is a multilayer neural network based on the masking field model which consists of a input layer, four feature extraction layers which extracts type, direction, stroke, and connection features, and an output layer which gives us recognized character codes. First, 4x4 subpatterns of an NxN character pattern stored in the input buffer are applied into the feature extraction layers sequentially. Then, each of feature extraction layers extracts sequentially features such as type, direction, stroke, and connection, respectively. Type features for direction and connection are extracted by the type feature extraction layer, direction features for stroke by the direction feature extraction layer and stroke and connection features for stroke by the direction feature extraction layer and stroke and connection features for the recongnition of character by the stroke and the connection feature extractions layers, respectively. The stroke and connection features are saved in the sequential buffer layer sequentially and using these features the characters are recognized in the output layer. The recognition results of this system by tests with 8 single consonants and 6 single vowels are promising.

  • PDF

Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target (수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.629-634
    • /
    • 2009
  • In real-time system application, the feature extraction and scoring algorithm for classification of the passive sonar target has the following problems: it requires an accurate and efficient feature extraction method because it is very difficult to distinguish the features of the propeller shaft rate (PSR) and the blade rate (BR) from the frequency spectrum in real-time, it requires a robust and effective feature scoring method because the classification database (DB) composed of extracted features is noised and incomplete, and further, it requires an easy design procedure in terms of structures and parameters. To solve these problems, an intelligent feature extraction and scoring algorithm using the evolution strategy (ES) and the fuzzy theory is proposed here. To verify the performance of the proposed algorithm, a passive sonar target classification is performed in real-time. Simulation results show that the proposed algorithm effectively solves sonar classification problems in real-time.

The Important Frequency Band Selection and Feature Vecotor Extraction System by an Evolutional Method

  • Yazama, Yuuki;Mitsukura, Yasue;Fukumi, Minoru;Akamatsu, Norio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2209-2212
    • /
    • 2003
  • In this paper, we propose the method to extract the important frequency bands from the EMG signal, and for generation of feature vector using the important frequency bands. The EMG signal is measured with 4 sensor and is recorded as 4 channel’s time series data. The same frequency bands from 4 channel’s frequency components are selected as the important frequency bands. The feature vector is calculated by the function formed using the combination of selected same important frequency bands. The EMG signals acquired from seven wrist motion type are recognized by changing into the feature vector formed. Then, the extraction and generation is performed by using the double combination of the genetic algorithm (GA) and the neural network (NN). Finally, in order to illustrate the effectiveness of the proposed method, computer simulations are done.

  • PDF

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

Geometric Model Decimation Method for Salient Features (돌출된 특징을 위한 기하 모델 단순화 방법)

  • Kim, Soo-Kyun;An, Sung-Og
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.4
    • /
    • pp.85-93
    • /
    • 2008
  • This paper proposes a method for generating low-level geometric models with retaining salient features during decimation. Our method employs feature extraction technique for extracting feature lines defined via curvature derivatives on the model (we divide features into ridges and valleys). We add the extraction method to simplification technique (Feature Quadric Error Metric) for making coarse model with features. This paper clearly shows that experimental results have better quality and smaller geometric error than previous methods.

  • PDF