• Title/Summary/Keyword: Feature-extraction

Search Result 2,582, Processing Time 0.038 seconds

Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems (Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

Hybrid-Feature Extraction for the Facial Emotion Recognition

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo;Jeong, In-Cheol;Ham, Ho-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1281-1285
    • /
    • 2004
  • There are numerous emotions in the human world. Human expresses and recognizes their emotion using various channels. The example is an eye, nose and mouse. Particularly, in the emotion recognition from facial expression they can perform the very flexible and robust emotion recognition because of utilization of various channels. Hybrid-feature extraction algorithm is based on this human process. It uses the geometrical feature extraction and the color distributed histogram. And then, through the independently parallel learning of the neural-network, input emotion is classified. Also, for the natural classification of the emotion, advancing two-dimensional emotion space is introduced and used in this paper. Advancing twodimensional emotion space performs a flexible and smooth classification of emotion.

  • PDF

A study on the Optimal Feature Extraction and Cmplex Adaptive Filter for a speech recognition (음성인식을 위한 복합형잡음제거필터와 최적특징추출에 관한 연구)

  • Cha, T.H.;Jang, S.K.;Choi, U.S;Choi, I.H.;Kim, C.S.
    • Speech Sciences
    • /
    • v.4 no.2
    • /
    • pp.55-68
    • /
    • 1998
  • In this paper, a novel method of noise reduction of speech based on a complex adaptive noise canceler and method of optimal feature extraction are proposed. This complex adaptive noise canceler needs simply the noise detection, and LMS algorithm used to calculate the adaptive filter coefficient. The method of optimal feature extraction requires the variance of noise. The experimental results have shown that the proposed method effectively reduced noise in noisy speech. Optimal feature extraction has shown similar characteristics in noise-free speech.

  • PDF

A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique (이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구)

  • Park, Jae-Jun;Kwon, Dong-Jin;Song, Yeong-Cheol;Ahn, Chang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

UFKLDA: An unsupervised feature extraction algorithm for anomaly detection under cloud environment

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.684-695
    • /
    • 2019
  • In a cloud environment, performance degradation, or even downtime, of virtual machines (VMs) usually appears gradually along with anomalous states of VMs. To better characterize the state of a VM, all possible performance metrics are collected. For such high-dimensional datasets, this article proposes a feature extraction algorithm based on unsupervised fuzzy linear discriminant analysis with kernel (UFKLDA). By introducing the kernel method, UFKLDA can not only effectively deal with non-Gaussian datasets but also implement nonlinear feature extraction. Two sets of experiments were undertaken. In discriminability experiments, this article introduces quantitative criteria to measure discriminability among all classes of samples. The results show that UFKLDA improves discriminability compared with other popular feature extraction algorithms. In detection accuracy experiments, this article computes accuracy measures of an anomaly detection algorithm (i.e., C-SVM) on the original performance metrics and extracted features. The results show that anomaly detection with features extracted by UFKLDA improves the accuracy of detection in terms of sensitivity and specificity.

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

INTERACTIVE FEATURE EXTRACTION FOR IMAGE REGISTRATION

  • Kim Jun-chul;Lee Young-ran;Shin Sung-woong;Kim Kyung-ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.641-644
    • /
    • 2005
  • This paper introduces an Interactive Feature Extraction (!FE) approach for the registration of satellite imagery by matching extracted point and line features. !FE method contains both point extraction by cross-correlation matching of singular points and line extraction by Hough transform. The purpose of this study is to minimize user's intervention in feature extraction and easily apply the extracted features for image registration. Experiments with these imagery dataset proved the feasibility and the efficiency of the suggested method.

  • PDF

Emotion recognition from speech using Gammatone auditory filterbank

  • Le, Ba-Vui;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.

A Study on the Feature Extraction of Pattern Recognition for Weld Defects Evaluation of Titanium Weld Zone (티타늄 용접부의 용접결함평가를 위한 형상인식 특징추출에 관한 연구)

  • Yun, In-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.17-22
    • /
    • 2011
  • This study proposes feature extraction method of pattern recognition by evaluation of weld defects in weld zone of titanium. For this purpose, analysis objectives in this study are features of attractor quadrant and fractal dimension. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as porosity of weld zone. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 0.87 and 1.00 in the case of part of 0.5 skip distance and 0.72 and 0.93 in the case of part of 1.0 skip distance were proposed on the basis of fractal dimensions. Attractor quadrant point, feature values of 1.322 and 1.172 in the case of ${\phi}1{\times}3mm$ porosity and 2.264 and 307 in the case of ${\phi}3{\times}3mm$ porosity were proposed on the basis of distribution value. The Proposed feature extraction of pattern recognition in this study can be used for safety evaluation of weld zone in titanium.