• Title/Summary/Keyword: Feature-based classification

Search Result 1,323, Processing Time 0.031 seconds

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

The Feature Extraction of Welding Flaw for Shape Recognition (용접결함의 형상인식을 위한 특징추출)

  • Kim, Jae-Yeol;You, Sin;Kim, Chang-Hyun;Song, Kyung-Seok;Yang, Dong-Jo;Lee, Chang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

A Study on MLP Neural Network Architecture and Feature Extraction for Korean Syllable Recognition (한국어 음절 인식을 위한 MLP 신경망 구조 및 특징 추출에 관한 연구)

  • 금지수;이현수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.672-675
    • /
    • 1999
  • In this paper, we propose a MLP neural network architecture and feature extraction for Korean syllable recognition. In the proposed syllable recognition system, firstly onset is classified by onset classification neural network. And the results information of onset classification neural network are used for feature selection of imput patterns vector. The feature extraction of Korean syllables is based on sonority. Using the threshold rate separate the syllable. The results of separation are used for feature of onset. nucleus and coda. ETRI's SAMDORI has been used by speech DB. The recognition rate is 96% in the speaker dependent and 93.3% in the speaker independent.

  • PDF

Feature Selection Based on Class Separation in Handwritten Numeral Recognition Using Neural Network (신경망을 이용한 필기 숫자 인식에서 부류 분별에 기반한 특징 선택)

  • Lee, Jin-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.543-551
    • /
    • 1999
  • The primary purposes in this paper are to analyze the class separation of features in handwritten numeral recognition and to make use of the results in feature selection. Using the Parzen window technique, we compute the class distributions and define the class separation to be the overlapping distance of two class distributions. The dimension of a feature vector is reduced by removing the void or redundant feature cells based on the class separation information. The experiments have been performed on the CENPARMI handwritten numeral database, and partial classification and full classification have been tested. The results show that the class separation is very effective for the feature selection in the 10-class handwritten numeral recognition problem since we could reduce the dimension of the original 256-dimensional feature vector by 22%.

  • PDF

A Study on Implementation of the High Speed Feature Extraction System Based on Block Type Classification (블록 유형 분류 알고리즘 기반 고속 특징추출 시스템 구현에 관한 연구)

  • Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2019
  • In this paper, we propose a implementation approach of the high-speed feature extraction algorithm. The proposed method is based on the block type classification algorithm which reduces the computation time when target macro block is divided to smooth block type that has no image features. It is quantitatively identified that occurs at 29.5% of the total image using 200 standard test images with $64{\times}64$ macro block size. This means that within a standard test image containing various image information, 29.5% can reduce the complexity of the operation. When the proposed approach is applied to the Canny edge detection, the required latency of the edge detection can be completely eliminated, such as 2D derivative filter, gradient magnitude/direction computation, non-maximal suppression, adaptive threshold calculation, hysteresis thresholding. Also, it is expected that operation time of the feature detection can be reduced by applying block type classification algorithm to various feature extraction algorithms in this way.

Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information (특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.79-82
    • /
    • 2015
  • Bag of visual words(BoVW) is one of the image classification and retrieval methods, using feature point that automatical sorting and searching system by image feature vector of data base. The existing method using feature point shall search or classify the image that user unwanted. To solve this weakness, when comprise the words, include not only feature point but color information that express overall mood of image or texture information that express repeated pattern. It makes various searching possible. At the test, you could see the result compared between classified image using the words that have only feature point and another image that added color and texture information. New method leads to accuracy of 80~90%.

  • PDF

Context-based classification for harmful web documents and comparison of feature selecting algorithms

  • Kim, Young-Soo;Park, Nam-Je;Hong, Do-Won;Won, Dong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.867-875
    • /
    • 2009
  • More and richer information sources and services are available on the web everyday. However, harmful information, such as adult content, is not appropriate for all users, notably children. Since internet is a worldwide open network, it has a limit to regulate users providing harmful contents through each countrie's national laws or systems. Additionally it is not a desirable way of developing a certain system-specific classification technology for harmful contents, because internet users can contact with them in diverse ways, for example, porn sites, harmful spams, or peer-to-peer networks, etc. Therefore, it is being emphasized to research and develop context-based core technologies for classifying harmful contents. In this paper, we propose an efficient text filter for blocking harmful texts of web documents using context-based technologies and examine which algorithms for feature selection, the process that select content terms, as features, can be useful for text categorization in all content term occurs in documents, are suitable for classifying harmful contents through implementation and experiment.

  • PDF

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.

Multiple octave-band based genre classification algorithm for music recommendation (음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1487-1494
    • /
    • 2011
  • In this paper, a novel genre classification algorithm is proposed for music recommendation system. Especially, to improve the classification accuracy, the band-pass filter for octave-based spectral contrast (OSC) feature is designed considering the psycho-acoustic model and actual frequency range of musical instruments. The GTZAN database including 10 genres was used for 10-fold cross validation experiments. The proposed multiple-octave based OSC produces better accuracy by 2.26% compared with the conventional OSC. The combined feature vector based on the proposed OSC and mel-frequency cepstral coefficient (MFCC) gives even better accuracy.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.