• Title/Summary/Keyword: Feature-based Matching

Search Result 539, Processing Time 0.023 seconds

A Study on Intelligent Control Algorithm Development for Cooperation Working of Human and Robot (인간과 로봇 협력작업을 위한 로봇 지능제어알고리즘 개발에 관한 연구)

  • Lee, Woo-Song;Jung, Yang-Guen;Park, In-Man;Jung, Jong-Gyu;Kim, Hui-Jin;Kim, Min-Seong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.285-297
    • /
    • 2017
  • This study proposed a new approach to develop an Intelligent control algorithm for cooperative working of human and robot based on voice recognition. In general case of speaker verification, Gaussian Mixture Model is used to model the feature vectors of reference speech signals. On the other hand, Dynamic Time Warping based template matching techniques were presented for the voice recognition about several years ago. We converge these two different concepts in a single method and then implement in a real time voice recognition enough to make reference model to satisfy 95% of recognition performance. In this paper it was illustrated the reliability of voice recognition by simulation and experiments for humanoid robot with 18 joints.

Camera Extrinsic Parameter Estimation using 2D Homography and LM Method based on PPIV Recognition (PPIV 인식기반 2D 호모그래피와 LM방법을 이용한 카메라 외부인수 산출)

  • Cha Jeong-Hee;Jeon Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.2 s.308
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper, we propose a method to estimate camera extrinsic parameter based on projective and permutation invariance point features. Because feature informations in previous research is variant to c.:men viewpoint, extraction of correspondent point is difficult. Therefore, in this paper, we propose the extracting method of invariant point features, and new matching method using similarity evaluation function and Graham search method for reducing time complexity and finding correspondent points accurately. In the calculation of camera extrinsic parameter stage, we also propose two-stage motion parameter estimation method for enhancing convergent degree of LM algorithm. In the experiment, we compare and analyse the proposed method with existing method by using various indoor images to demonstrate the superiority of the proposed algorithms.

Vision-based Camera Localization using DEM and Mountain Image (DEM과 산영상을 이용한 비전기반 카메라 위치인식)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.177-186
    • /
    • 2005
  • In this Paper. we propose vision-based camera localization technique using 3D information which is created by mapping of DEM and mountain image. Typically, image features for localization have drawbacks, it is variable to camera viewpoint and after time information quantify increases . In this paper, we extract invariance features of geometry which is irrelevant to camera viewpoint and estimate camera extrinsic Parameter through accurate corresponding Points matching by Proposed similarity evaluation function and Graham search method we also propose 3D information creation method by using graphic theory and visual clues, The Proposed method has the three following stages; point features invariance vector extraction, 3D information creation, camera extrinsic Parameter estimation. In the experiments, we compare and analyse the proposed method with existing methods to demonstrate the superiority of the proposed methods.

  • PDF

Detecting LDoS Attacks based on Abnormal Network Traffic

  • Chen, Kai;Liu, Hui-Yu;Chen, Xiao-Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1831-1853
    • /
    • 2012
  • By sending periodically short bursts of traffic to reduce legit transmission control protocol (TCP) traffic, the low-rate denial of service (LDoS) attacks are hard to be detected and may endanger covertly a network for a long period. Traditionally, LDoS detecting methods mainly concentrate on the attack stream with feature matching, and only a limited number of attack patterns can be detected off-line with high cost. Recent researches divert focus from the attack stream to the traffic anomalies induced by LDoS attacks, which can detect more kinds of attacks with higher efficiency. However, the limited number of abnormal characteristics and the inadequacy of judgment rules may cause wrong decision in some particular situations. In this paper, we address the problem of detecting LDoS attacks and present a scheme based on the fluctuant features of legit TCP and acknowledgment (ACK) traffic. In the scheme, we define judgment criteria which used to identify LDoS attacks in real time at an optimal detection cost. We evaluate the performance of our strategy in real-world network topologies. Simulations results clearly demonstrate the superiority of the method proposed in detecting LDoS attacks.

Movement Search in Video Stream Using Shape Sequence (동영상에서 모양 시퀀스를 이용한 동작 검색 방법)

  • Choi, Min-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.4
    • /
    • pp.492-501
    • /
    • 2009
  • Information on movement of objects in videos can be used as an important part in categorizing and separating the contents of a scene. This paper is proposing a shape-based movement-matching algorithm to effectively find the movement of an object in video streams. Information on object movement is extracted from the object boundaries from the input video frames becoming expressed in continuous 2D shape information while individual 2D shape information is converted into a lD shape feature using the shape descriptor. Object movement in video can be found as simply as searching for a word in a text without a separate movement segmentation process using the sequence of the shape descriptor listed according to order. The performance comparison results with the MPEG-7 shape variation descriptor showed that the proposed method can effectively express the movement information of the object and can be applied to movement search and analysis applications.

  • PDF

Face Recognition Based on Weighted Hausdorff Distance for Profile Image (가중치 하우스도르프 거리를 이용한 프로파일 얼굴인식)

  • 이영학
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.474-483
    • /
    • 2004
  • In this paper, we present a new Practical implementation of a person verification system using the profile of 3-dimensional(3D) face images based on weighted Hausdorff distance(WHD) used depth information. The approach works on finding the nose tip have protrusion shape on the face using iterative selection method to use a fiducial feint and extract the profile image from vertical 3D data for the nose tip. Hausdorff distance(HD) is one of usually used measures for object matching. This works analyze the conventional HD and WHD, which the weighted factor is depth information. The Ll measure for comparing two feature vectors were used, because it is simple and robust. In the experimental results, the WHD method achieves recognition rate of 94.3% when the ranked threshold is 5.

  • PDF

Image Retrieval using Multiple Features on Mobile Platform (모바일 플랫폼에서 다중 특징 기반의 이미지 검색)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper, we propose a mobile image retrieval system which utilizes the mobile device's sensor information and enables running in a variety of the environments, and implement the system on Android platform. The proposed system deals with a new image descriptor using combination of the visual feature with EXIF attributes in the target of JPEG image, and image matching algorithm which is optimized to the mobile environments. Experiments are performed on the Android platform, and the experimental results revealed that the proposed algorithm exhibits a significant improved results with large image database.

Fuzzy Indexing and Retrieval in CBR with Weight Optimization Learning for Credit Evaluation

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.491-501
    • /
    • 2002
  • Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. CBR is a reasoning methodology that exploits similar experienced solutions, in the form of past cases, to solve new problems. Hybrid model achieves some convergence of the wide proliferation of credit evaluation modeling. As a result, Hybrid model showed that proposed methodology classify more accurately than any of techniques individually do. It is confirmed that proposed methodology predicts significantly better than individual techniques and the other combining methodologies. The objective of the proposed approach is to determines a set of weighting values that can best formalize the match between the input case and the previously stored cases and integrates fuzzy sit concepts into the case indexing and retrieval process. The GA is used to search for the best set of weighting values that are able to promote the association consistency among the cases. The fitness value in this study is defined as the number of old cases whose solutions match the input cases solution. In order to obtain the fitness value, many procedures have to be executed beforehand. Also this study tries to transform financial values into category ones using fuzzy logic approach fur performance of credit evaluation. Fuzzy set theory allows numerical features to be converted into fuzzy terms to simplify the matching process, and allows greater flexibility in the retrieval of candidate cases. Our proposed model is to apply an intelligent system for bankruptcy prediction.

  • PDF

Face Detection Based on Distribution Map (분포맵에 기반한 얼굴 영역 검출)

  • Cho Han-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Recently face detection has actively been researched due to its wide range of applications, such as personal identification and security systems. In this paper, a new face detection method based on the distribution map is proposed. Face-like regions are first extracted by applying the skin color map with the frequency to a color image and then, possible eye regions are determined by using the pupil color distribution map within the face-like regions. This enables the reduction of space for finding facial features. Eye candidates are detected by means of a template matching method using weighted window, which utilizes the correlation values of the luminance component and chrominance components as feature vectors. Finally, a cost function for mouth detection and location information between the facial features are applied to each pair of the eye candidates for face detection. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Content Adaptive Interpolation for Intra-field Deinterlacting (공간적 디인터레이싱을 위한 컨텐츠 기반 적응적 보간 기법)

  • Kim, Won-Ki;Jin, Soon-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1000-1009
    • /
    • 2007
  • This paper presents a content adaptive interpolation (CAI) for intra deinterlacing. The CAI consists of three steps: pre-processing, content classification, and adaptive interpolation. There are also three main interpolation methods in our proposed CAI, i.e. modified edge-based line averaging (M-ELA), gradient directed interpolation (GDI), and window matching method (WMM). Each proposed method shows different performances according to spatial local features. Therefore, we analyze the local region feature using the gradient detection and classify each missing pixel into four categories. And then, based on the classification result, a different do-interlacing algorithm is activated in order to obtain the best performance. Experimental results demonstrate that the CAI method performs better than previous techniques.