The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.
Observation of elastic fiber's change of mouse TMJ due to several round factor, principally external stimulations, their influence on the TMJ structure's change and the analize of the consecutive evolution of the disease in most important. So, the author believe that the factor of TMJ feature is the elastic feature's change and it's the principal factor of the TMJ disease. For observation of the increase and disposition of elastic fiber that to regulate the elastic feature of tissue and allow it existence. For this propose, observation with histologic methods on 20mouse ICR of 3 days, 1 week, 2 weeks, 3 weeks and 4 weeks. The results were as follow : 1. In the early stage, the condyle of TMJ is originated from cartilage mass, and it's calcification is endochondral. 2. In the early stage, the disc is relatively thin and immature, but in the later stage the fiber is dense and the disposition is most functional. 3. Observation of the early stage, the elastic fiber is a thin fiber that to across antero- posterior direction, but in the later stage elastic fiber are developed, the disposition that in the early stage was perpendicular to articular surface, now in parallel. 4. The elastic fiber was observated most clearly in the retrodiscal tissue. 5. In conclusion, the elastic fiber is observed like a thin fiber 1 week from born, but the fiber to increase the weight and it dispose functionally, and 4 week from born, it can realize the normal function.
KIPS Transactions on Software and Data Engineering
/
v.2
no.5
/
pp.341-346
/
2013
In this paper, we propose a rule extraction method using a modified Fuzzy Min-Max (FMM) neural network. The suggested method supplements the hyperbox definition with a frequency factor of feature values in the learning data set. We have defined a relevance factor between features and pattern classes. The proposed model can solve the ambiguity problem without using the overlapping test process and the contraction process. The hyperbox membership function based on the fuzzy partitions is defined for each dimension of a pattern class. The weight values are trained by the feature range and the frequency of feature values. The excitatory features and the inhibitory features can be classified by the proposed method and they can be used for the rule generation process. From the experiments of sign language recognition, the proposed method is evaluated empirically.
Journal of the Korean Society for Precision Engineering
/
v.18
no.1
/
pp.98-103
/
2001
Machining is the commonly used process in the manufacturing of prototypes. This process offers several advantages, such as rigidity of the machine, precision of the machine, precision of the operation and specially a quick delivery. The weight and immobility of the machine support and immobilize the part during the operation. However, despite these advantages it shows, machining still presents several limitations. The immobilization, location and support of the part are referred to as fixturing or workholding and present the biggest challenge for time efficient machining. So it is important to select and design the appropriate fixturing assembly. This assembly depends on the complexity of the part and the tool paths and may require the construction of dedicated fixtures. With traditional techniques, the range of fixturable shapes is limited and the identification of suitable fixtures in a given setup involves complex reasoning. To solve this limitation and to apply the automation, this paper presents the Reference Free Part Encapsulation(RFPE) and implementation of the encapsulation system. The feature-based modeling system and the encapsulation system are implemented. The small part of which it is difficult to find out the appropriate fixturing assembly is made by this system.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.12
/
pp.1150-1158
/
2010
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
The purpose of this study was to research the clinical of cerebral palsy taking physical therapy at the department of physical therapy of various clinics at Kyungnam${\cdot}$Pusan. Among the subjects that was born from January, 1985 to June, 2000, 226 parents was answered to questionary of this study. The results of the study were as follows: 1) During the embryonic period, the cerebral palsied children above 37weeks were 114 subjects(50.9%) and there was 51 subjects(22.8%) between 28weeks to 31weeks and 32weeks to 36weeks. The children below 28weeks were 8 subjects(3.6%) and showed the lowest rate. As compared to the delievery methods, the normal delievery, cesserian section delievery, and forceps delievery was 124 subjects(55.1%), 81(36.0%), 16(7.1%), nad 4(1.8%). Among them the mormal delievery indicated the highest percentage. 2) Compared to the weight during birth time, the above 2500g of 121 subjects(55.3%) showed the highest rate and the 28 subjects(12.8%) had the birth weight of 1000to 1499g. There was 4 subjects(1.8%) below the 1000g. 3) Compared to the birth weight of the pregnancy period, the weight of the cerebral palsied children below 28weeks were 1000g to 1499g and showed the highest rate of 4 subjects(50%). The children between 28weeks to 31weeks and 32weeks to 36weeks were 1500 to 2499g, each 23(47.9%), and 28(54.9%) subject. The weight of the children of the above 37weeks were above 2500g and 94 subjects(87.4%). Therefore, if the period of pregnancy is short, the weight birth would indicate the lower weight than the weight of the other times(p<0.05). 4) The spastic type of the pregnant period had the highest rate and the period was the below 28weeks to 31weeks. The cerebral palsied children of athetoid and mixed type were 6 subjects(13.3%) and 5 subjects(31.9%) between 28 and 31weeks. The mixed type of them was each 15 (31.9%) and 33 (30.6%) subjects between 32 to 36 weeks and the above 37weeks. The mixed type showed a slightly high rate (p<0.05). 5) The spastic type indicated the highest rate in the weight of birth time and especially showed the high rate in the case of 1000 to 1499g. The mixed type indicated a slightly high rate of 17 subjects (25.8%) and 32 subjects (29.1%) in case of 1500 to 2499g and the above 2500g (p<0.05).
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.6
/
pp.105-111
/
2017
In this paper, the analysis results are shown about several weights of Weighted K-Nearest Neighbor method, Recently, it is employed for the indoor positioning technologies using WiFi fingerprint which has been actively studied. In spite of the simplest feature, the W-KNN method shows comparable performance to another methods using WiFi fingerprint technology. So W-KNN method has employed in the existing indoor positioning system. It shows positioning error performance according to data preprocessing and weight factor, and the analysis on the weight is very important. In this paper, based on the real measured WiFi fingerprint data, the estimation error is analyzed and the performances are compared, for the case of data processing methods, of the weight of average, variance, and distance, and of the averaging several position of number K. These results could be practically useful to construct the real indoor positioning system.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.9
/
pp.1165-1171
/
2018
CNN requires a large amount of computation and memory in the process of extracting the feature of the object. Also, It is trained from the network that the user has configured, and because the structure of the network is fixed, it can not be modified during training and it is also difficult to use it in a mobile device with low computing power. To solve these problems, we apply a pruning method to the pre-trained weight file to reduce computation and memory requirements. This method consists of three steps. First, all the weights of the pre-trained network file are retrieved for each layer. Second, take an absolute value for the weight of each layer and obtain the average. After setting the average to a threshold, remove the weight below the threshold. Finally, the network file applied the pruning method is re-trained. We experimented with LeNet-5 and AlexNet, achieved 31x on LeNet-5 and 12x on AlexNet.
Journal of Institute of Control, Robotics and Systems
/
v.17
no.10
/
pp.1021-1028
/
2011
The objective of this paper is to optimize the design parameters of a novel mechanism for a robotic knee orthosis. The feature of the proposed knee othosis is to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The quadriceps device operates in five-bar links with 2-DOF motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking. However, the proposed orthosis must use additional linkages than a simple four-bar mechanism. To maximize the benefit of reducing the actuators power by using the developed kinematic design, it is necessary to minimize total weight of the device, while keeping necessary actuator performances of torques and angular velocities for support. In this paper, we use a SGA (Simple Genetic Algorithm) to minimize sum of total link lengths and motor power by reducing the weight of the novel knee orthosis. To find feasible parameters, kinematic constraints of the hamstring and quadriceps mechanisms have been applied to the algorithm. The proposed optimization scheme could reduce sum of total link lengths to half of the initial value. The proposed optimization scheme can be applied to reduce total weight of general multi-linkages while keeping necessary actuator specifications.
The Journal of Korean Institute of Next Generation Computing
/
v.14
no.6
/
pp.15-29
/
2018
This paper proposes an enhanced object tracking algorithm to compensate the lack of temporal information in existing particle swarm optimization based object trackers using the trajectory of the target object. The proposed scheme also enables the tracking and documentation of the location of an online updated set of distractions. Based on the trajectories information and the distraction set, a rule based approach with adaptive parameters is utilized for occlusion detection and determination of the target position. Compare to existing algorithms, the proposed approach provides more comprehensive use of available information and does not require manual adjustment of threshold values. Moreover, an effective weight adjustment function is proposed to alleviate the diversity loss and pre-mature convergence problem in particle swarm optimization. The proposed weight function ensures particles to search thoroughly in the frame before convergence to an optimum solution. In the existence of multiple objects with similar feature composition, this algorithm is tested to significantly reduce convergence to nearby distractions compared to the other existing swarm intelligence based object trackers.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.