• Title/Summary/Keyword: Feature representation

Search Result 422, Processing Time 0.026 seconds

Building Feature Ontology for CAD System Interoperability (CAD 시스템 간의 상호 운용성을 위한 설계 특징형상의 온톨로지 구축)

  • 이윤숙;천상욱;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among different systems. According to RTI, approximately one billion dollar has been being spent yearly for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design feature need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP (Standard for the Exchange of Product model data) have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is unattainable. In this paper, we utilize the ontology concept to build a data model of design feature which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way. This paper proposes a methodology for integrating modeling features of CAD systems.

A flexible Feature Matching for Automatic Face and Facial Feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.705-711
    • /
    • 2003
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in !be image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.

Feature Voting for Object Localization via Density Ratio Estimation

  • Wang, Liantao;Deng, Dong;Chen, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6009-6027
    • /
    • 2019
  • Support vector machine (SVM) classifiers have been widely used for object detection. These methods usually locate the object by finding the region with maximal score in an image. With bag-of-features representation, the SVM score of an image region can be written as the sum of its inside feature-weights. As a result, the searching process can be executed efficiently by using strategies such as branch-and-bound. However, the feature-weight derived by optimizing region classification cannot really reveal the category knowledge of a feature-point, which could cause bad localization. In this paper, we represent a region in an image by a collection of local feature-points and determine the object by the region with the maximum posterior probability of belonging to the object class. Based on the Bayes' theorem and Naive-Bayes assumptions, the posterior probability is reformulated as the sum of feature-scores. The feature-score is manifested in the form of the logarithm of a probability ratio. Instead of estimating the numerator and denominator probabilities separately, we readily employ the density ratio estimation techniques directly, and overcome the above limitation. Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of our method compared to the baselines. In addition, the performance can be further improved by taking advantage of the recently developed deep convolutional neural network features.

A Novel Perceptual Hashing for Color Images Using a Full Quaternion Representation

  • Xing, Xiaomei;Zhu, Yuesheng;Mo, Zhiwei;Sun, Ziqiang;Liu, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5058-5072
    • /
    • 2015
  • Quaternions have been commonly employed in color image processing, but when the existing pure quaternion representation for color images is used in perceptual hashing, it would degrade the robustness performance since it is sensitive to image manipulations. To improve the robustness in color image perceptual hashing, in this paper a full quaternion representation for color images is proposed by introducing the local image luminance variances. Based on this new representation, a novel Full Quaternion Discrete Cosine Transform (FQDCT)-based hashing is proposed, in which the Quaternion Discrete Cosine Transform (QDCT) is applied to the pseudo-randomly selected regions of the novel full quaternion image to construct two feature matrices. A new hash value in binary is generated from these two matrices. Our experimental results have validated the robustness improvement brought by the proposed full quaternion representation and demonstrated that better performance can be achieved in the proposed FQDCT-based hashing than that in other notable quaternion-based hashing schemes in terms of robustness and discriminability.

Object Recognition by Invariant Feature Extraction in FLIR (적외선 영상에서의 불변 특징 정보를 이용한 목표물 인식)

  • 권재환;이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.65-68
    • /
    • 2000
  • This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.

  • PDF

A Flexible Feature Matching for Automatic Facial Feature Points Detection (얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • Hwang, Suen-Ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • An automatic facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the system.

  • PDF

A Flexible Feature Matching for Automatic face and Facial feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;손형경;정연길;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.608-612
    • /
    • 2002
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features md the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image spare by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the fare identification system.

  • PDF

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

RBM-based distributed representation of language (RBM을 이용한 언어의 분산 표상화)

  • You, Heejo;Nam, Kichun;Nam, Hosung
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.2
    • /
    • pp.111-131
    • /
    • 2017
  • The connectionist model is one approach to studying language processing from a computational perspective. And building a representation in the connectionist model study is just as important as making the structure of the model in that it determines the level of learning and performance of the model. The connectionist model has been constructed in two different ways: localist representation and distributed representation. However, the localist representation used in the previous studies had limitations in that the unit of the output layer having a rare target activation value is inactivated, and the past distributed representation has the limitation of difficulty in confirming the result by the opacity of the displayed information. This has been a limitation of the overall connection model study. In this paper, we present a new method to induce distributed representation with local representation using abstraction of information, which is a feature of restricted Boltzmann machine, with respect to the limitation of such representation of the past. As a result, our proposed method effectively solves the problem of conventional representation by using the method of information compression and inverse transformation of distributed representation into local representation.

Shock Graph for Representation and Modeling of Posture

  • Tahir, Nooritawati Md.;Hussain, Aini;Abdul Samad, Salina;Husain, Hafizah
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.507-515
    • /
    • 2007
  • Skeleton transform of which the medial axis transform is the most popular has been proposed as a useful shape abstraction tool for the representation and modeling of human posture. This paper explains this proposition with a description of the areas in which skeletons could serve to enable the representation of shapes. We present algorithms for two-dimensional posture modeling using the developed simplified shock graph (SSG). The efficacy of SSG extracted feature vectors as shape descriptors are also evaluated using three different classifiers, namely, decision tree, multilayer perceptron, and support vector machine. The paper concludes with a discussion of the issues involved in using shock graphs to model and classify human postures.

  • PDF