• Title/Summary/Keyword: Feature representation

Search Result 422, Processing Time 0.03 seconds

A Study of Efficient Pattern Classification on Texture Feature Representation Coordinate System (텍스처 특징 표현 좌표체계에서의 효율적인 패턴 분류 방법에 대한 연구)

  • Woo, Kyeong-Deok;Kim, Sung-Gook;Baik, Sung-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.237-248
    • /
    • 2010
  • When scenes in the real world are perceived for the purpose of computer/robot vision fields, there are great deals of texture based patterns in them. This paper introduces a texture feature representation on a coordinate system in which many different patterns can be represented with a mathematical model (Gabor function). The representation of texture features of each pattern on the coordinate system results in the high performance/competence of texture pattern classification. A decision tree algorithm is used to classify pattern data represented on the proposed coordinate system. The experimental results for the texture pattern classification show that the proposed method is better than previous researches.

Aircraft Detection on Panchromatic Imagery Based on Densely Connected Convolutional Network

  • Wiratama, Wahyu;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.185-187
    • /
    • 2018
  • This paper presents an aircraft detection on panchromatic image using densely connected convolutional network. This algorithm connects all preceding feature-maps to all subsequent layers. It is encouraged to reuse feature-maps and enhance feature-maps representation. This algorithm is driven to learn aircraft feature to detect aircraft objects on panchromatic imagery. Based on the experimental result, it can yield accuracy of 92%.

  • PDF

A Study on Patent Literature Classification Using Distributed Representation of Technical Terms (기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구)

  • Choi, Yunsoo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.179-199
    • /
    • 2019
  • In this paper, we propose optimal methodologies for classifying patent literature by examining various feature extraction methods, machine learning and deep learning models, and provide optimal performance through experiments. We compared the traditional BoW method and a distributed representation method (word embedding vector) as a feature extraction, and compared the morphological analysis and multi gram as the method of constructing the document collection. In addition, classification performance was verified using traditional machine learning model and deep learning model. Experimental results show that the best performance is achieved when we apply the deep learning model with distributed representation and morphological analysis based feature extraction. In Section, Class and Subclass classification experiments, We improved the performance by 5.71%, 18.84% and 21.53%, respectively, compared with traditional classification methods.

Shape Representation and Comparison of Architectural Drawings (건축도면의 형상재현과 비교)

  • Park S.-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 2004
  • This paper explains the qualitative shape representation scheme and general shape analysis procedure based on shape feature categories. It takes two different groups of architectural drawings as examples and comparer them so as to confirm that the procedure is capable of comparing one group with another. In order to verify the validity of qualitative shape representation scheme, we used statistical methods as well as symbolic representation and analysis techniques. This paper concludes that two different groups of architectural drawings of similar kind are analyzed to be distinguished and specifically characterized. 11 drawings of Kahn and 13 drawings of Aalto are taken into considerations. Linear regressions are used in characterizing the shape featural relationships.

Content Based Image Retrieval using 8AB Representation of Spatial Relations between Objects (객체 위치 관계의 8AB 표현을 이용한 내용 기반 영상 검색 기법)

  • Joo, Chan-Hye;Chung, Chin-Wan;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.304-314
    • /
    • 2007
  • Content Based Image Retrieval (CBIR) is to store and retrieve images using the feature description of image contents. In order to support more accurate image retrieval, it has become necessary to develop features that can effectively describe image contents. The commonly used low-level features, such as color, texture, and shape features may not be directly mapped to human visual perception. In addition, such features cannot effectively describe a single image that contains multiple objects of interest. As a result, the research on feature descriptions has shifted to focus on higher-level features, which support representations more similar to human visual perception like spatial relationships between objects. Nevertheless, the prior works on the representation of spatial relations still have shortcomings, particularly with respect to supporting rotational invariance, Rotational invariance is a key requirement for a feature description to provide robust and accurate retrieval of images. This paper proposes a high-level feature named 8AB (8 Angular Bin) that effectively describes the spatial relations of objects in an image while providing rotational invariance. With this representation, a similarity calculation and a retrieval technique are also proposed. In addition, this paper proposes a search-space pruning technique, which supports efficient image retrieval using the 8AB feature. The 8AB feature is incorporated into a CBIR system, and the experiments over both real and synthetic image sets show the effectiveness of 8AB as a high-level feature and the efficiency of the pruning technique.

Enhancement of CAD Model Interoperability Based on Feature Ontology

  • Lee Yoonsook;Cheon Sang-Uk;Han Sanghung
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.3
    • /
    • pp.33-42
    • /
    • 2005
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different software applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among heterogeneous systems. It is said that approximately one billion dollar has been being spent yearly in USA for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design features need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP standard have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is not possible. This paper proposes a methodology for integrating modeling features of CAD systems. We utilize the ontology concept to build a data model of design features which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way.

Representation and Detection of Video Shot s Features for Emotional Events (감정에 관련된 비디오 셧의 특징 표현 및 검출)

  • Kang, Hang-Bong;Park, Hyun-Jae
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The processing of emotional information is very important in Human-Computer Interaction (HCI). In particular, it is very important in video information processing to deal with a user's affection. To handle emotional information, it is necessary to represent meaningful features and detect them efficiently. Even though it is not an easy task to detect emotional events from low level features such as colour and motion, it is possible to detect them if we use statistical analysis like Linear Discriminant Analysis (LDA). In this paper, we propose a representation scheme for emotion-related features and a defection method. We experiment with extracted features from video to detect emotional events and obtain desirable results.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.