• Title/Summary/Keyword: Feature representation

Search Result 422, Processing Time 0.031 seconds

Facial Expression Recognition using ICA-Factorial Representation Method (ICA-factorial 표현법을 이용한 얼굴감정인식)

  • Han, Su-Jeong;Kwak, Keun-Chang;Go, Hyoun-Joo;Kim, Sung-Suk;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.371-376
    • /
    • 2003
  • In this paper, we proposes a method for recognizing the facial expressions using ICA(Independent Component Analysis)-factorial representation method. Facial expression recognition consists of two stages. First, a method of Feature extraction transforms the high dimensional face space into a low dimensional feature space using PCA(Principal Component Analysis). And then, the feature vectors are extracted by using ICA-factorial representation method. The second recognition stage is performed by using the Euclidean distance measure based KNN(K-Nearest Neighbor) algorithm. We constructed the facial expression database for six basic expressions(happiness, sadness, angry, surprise, fear, dislike) and obtained a better performance than previous works.

Image Watermarking Based on Feature Points of Scale-Space Representation (스케일 스페이스 특징점을 이용한 영상 워터마킹)

  • Seo, Jin-S.;Yoo, Chang-D.
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.367-370
    • /
    • 2005
  • This paper proposes a novel method for content-based watermarking based on feature points of an image. At each feature point, watermark is embedded after affine normalization according to the local characteristic scale and orientation. The characteristic scale is the scale at which the normalized scale-space representation of an image attains a maximum value, and the characteristic orientation is the angle of the principal axis of an image. By binding watermarking with the local characteristics of an image, resilience against affine transformations can be obtained. Experimental results show that the proposed method is robust against various image processing steps including affine transformations, cropping, filtering, and JPEG compression.

  • PDF

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.

Enhanced and applicable algorithm for Big-Data by Combining Sparse Auto-Encoder and Load-Balancing, ProGReGA-KF

  • Kim, Hyunah;Kim, Chayoung
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.218-223
    • /
    • 2021
  • Pervasive enhancement and required enforcement of the Internet of Things (IoTs) in a distributed massively multiplayer online architecture have effected in massive growth of Big-Data in terms of server over-load. There have been some previous works to overcome the overloading of server works. However, there are lack of considered methods, which is commonly applicable. Therefore, we propose a combing Sparse Auto-Encoder and Load-Balancing, which is ProGReGA for Big-Data of server loads. In the process of Sparse Auto-Encoder, when it comes to selection of the feature-pattern, the less relevant feature-pattern could be eliminated from Big-Data. In relation to Load-Balancing, the alleviated degradation of ProGReGA can take advantage of the less redundant feature-pattern. That means the most relevant of Big-Data representation can work. In the performance evaluation, we can find that the proposed method have become more approachable and stable.

A Low-Cost Lidar Sensor based Glass Feature Extraction Method for an Accurate Map Representation using Statistical Moments (통계적 모멘트를 이용한 정확한 환경 지도 표현을 위한 저가 라이다 센서 기반 유리 특징점 추출 기법)

  • An, Ye Chan;Lee, Seung Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • This study addresses a low-cost lidar sensor-based glass feature extraction method for an accurate map representation using statistical moments, i.e. the mean and variance. Since the low-cost lidar sensor produces range-only data without intensity and multi-echo data, there are some difficulties in detecting glass-like objects. In this study, a principle that an incidence angle of a ray emitted from the lidar with respect to a glass surface is close to zero degrees is concerned for glass detection. Besides, all sensor data are preprocessed and clustered, which is represented using statistical moments as glass feature candidates. Glass features are selected among the candidates according to several conditions based on the principle and geometric relation in the global coordinate system. The accumulated glass features are classified according to the distance, which is lastly represented on the map. Several experiments were conducted in glass environments. The results showed that the proposed method accurately extracted and represented glass windows using proper parameters. The parameters were empirically designed and carefully analyzed. In future work, we will implement and perform the conventional SLAM algorithms combined with our glass feature extraction method in glass environments.

A Comparative Study on High School Students' Mathematical Modeling Cognitive Features

  • Li, Mingzhen;Hu, Yuting;Yu, Ping;Cai, Zhong
    • Research in Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.137-154
    • /
    • 2012
  • Comparative studies on mathematical modeling cognition feature were carried out between 15 excellent high school third-grade science students (excellent students for short) and 15 normal ones (normal students for short) in China by utilizing protocol analysis and expert-novice comparison methods and our conclusions have been drawn as below. 1. In the style, span and method of mathematical modeling problem representation, both excellent and normal students adopted symbolic and methodological representation style. However, excellent students use mechanical representation style more often. Excellent students tend to utilize multiple-representation while normal students tend to utilize simplicity representation. Excellent students incline to make use of circular representation while normal students incline to make use of one-way representation. 2. In mathematical modeling strategy use, excellent students tend to tend to use equilibrium assumption strategy while normal students tend to use accurate assumption strategy. Excellent students tend to use sample analog construction strategy while normal students tend to use real-time generation construction strategy. Excellent students tend to use immediate self-monitoring strategy while normal students tend to use review-monitoring strategy. Excellent students tend to use theoretical deduction and intuitive judgment testing strategy while normal students tend to use data testing strategy. Excellent students tend to use assumption adjustment and modeling adjustment strategy while normal students tend to use model solving adjustment strategy. 3. In the thinking, result and efficiency of mathematical modeling, excellent students give brief oral presentations of mathematical modeling, express themselves more logically, analyze problems deeply and thoroughly, have multiple, quick and flexible thinking and the utilization of mathematical modeling method is shown by inspiring inquiry, more correct results and high thinking efficiency while normal students give complicated protocol material, express themselves illogically, analyze problems superficially and obscurely, have simple, slow and rigid thinking and the utilization of mathematical modeling method is shown by blind inquiry, more fixed and inaccurate thinking and low thinking efficiency.

An improved kernel principal component analysis based on sparse representation for face recognition

  • Huang, Wei;Wang, Xiaohui;Zhu, Yinghui;Zheng, Gengzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2709-2729
    • /
    • 2016
  • Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).

Speech signal processing in the auditory system (청각 계통에서의 음성신호처리)

  • 이재혁;심재성;백승화;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.680-683
    • /
    • 1987
  • The speech signal processing in the auditory system can be analysized based on two representations : Average discharge rate and Temporal discharge pattern. But the average discharge rate representation is restricted by the narrow dynamic range because of the rate saturation and the two tone suppression phenomena, and the temporal discharge pattern representation needs a sophisticate frequency analysis and synchrony measure. In this paper, a simple representation is proposed : using a model considering the interaction of Cochlear fluid-BM movement and a haircell model, the feature of speech signals (formant frequency and pitch of vowels) is easily estimated in the Average Synchronized Rate.

  • PDF

Combing data representation by Sparse Autoencoder and the well-known load balancing algorithm, ProGReGA-KF (Sparse Autoencoder의 데이터 특징 추출과 ProGReGA-KF를 결합한 새로운 부하 분산 알고리즘)

  • Kim, Chayoung;Park, Jung-min;Kim, Hye-young
    • Journal of Korea Game Society
    • /
    • v.17 no.5
    • /
    • pp.103-112
    • /
    • 2017
  • In recent years, expansions and advances of the Internet of Things (IoTs) in a distributed MMOGs (massively multiplayer online games) architecture have resulted in massive growth of data in terms of server workloads. We propose a combing Sparse Autoencoder and one of platforms in MMOGs, ProGReGA. In the process of Sparse Autoencoder, data representation with respect to enhancing the feature is excluded from this set of data. In the process of load balance, the graceful degradation of ProGReGA can exploit the most relevant and less redundant feature of the data representation. We find out that the proposed algorithm have become more stable.

Bagging deep convolutional autoencoders trained with a mixture of real data and GAN-generated data

  • Hu, Cong;Wu, Xiao-Jun;Shu, Zhen-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5427-5445
    • /
    • 2019
  • While deep neural networks have achieved remarkable performance in representation learning, a huge amount of labeled training data are usually required by supervised deep models such as convolutional neural networks. In this paper, we propose a new representation learning method, namely generative adversarial networks (GAN) based bagging deep convolutional autoencoders (GAN-BDCAE), which can map data to diverse hierarchical representations in an unsupervised fashion. To boost the size of training data, to train deep model and to aggregate diverse learning machines are the three principal avenues towards increasing the capabilities of representation learning of neural networks. We focus on combining those three techniques. To this aim, we adopt GAN for realistic unlabeled sample generation and bagging deep convolutional autoencoders (BDCAE) for robust feature learning. The proposed method improves the discriminative ability of learned feature embedding for solving subsequent pattern recognition problems. We evaluate our approach on three standard benchmarks and demonstrate the superiority of the proposed method compared to traditional unsupervised learning methods.