• Title/Summary/Keyword: Feature representation

Search Result 422, Processing Time 0.031 seconds

Browning's Dramatic Monologue and Mulvey's Feminist Film Theory (멀비의 페미니즘 영화 이론으로 읽는 브라우닝의 극적 독백)

  • Sun, Hee-Jung
    • English & American cultural studies
    • /
    • v.17 no.2
    • /
    • pp.1-27
    • /
    • 2017
  • My aim in this paper is to provide a clear view of Victorian gender ideology and highlight the role played by Browning's dramatic monologues in the challenge against the strict patriarchal codes of the era. Laura Mulvey's Male Gaze theory in cinema is especially useful for understanding Browning's most well-known dramatic monologues, "Porphyria's Lover," and "My Last Duchess," because these poems are structured by polarities of looking and being looked at, the active and the passive. In her 1975 essay "Visual Pleasure and Narrative Cinema", Mulvey introduced the second-wave feminist concept of "male gaze" as a feature of gender power asymmetry in film. To gaze implies more than to look at – it signifies a psychological relationship of power, in which the gazer is superior to the object of the gaze. She declares that in patriarchal society pleasure in looking has been split between active/male and passive/female. Browning's women are subject to the male gaze, but they refuse to become the objects of a scopophilic pleasure-in-looking. Porphyria and the Duchess don't exist in order to satisfy the desires and pleasures of men. They reveal themselves as an autonomous being - reserved in Victorian gender dynamics for men. Mulvey advocates 'an alternative cinema' which can challenges the male-dominated Hollywood ideology. It is possible to say that Browning's dramatic monologues correspond to Mulvey's 'alternative cinema' because they show a counterview in terms of the representation of woman against the Victorian patriarchal ideology.

Snoring sound detection method using attention-based convolutional bidirectional gated recurrent unit (주의집중 기반의 합성곱 양방향 게이트 순환 유닛을 이용한 코골이 소리 검출 방식)

  • Kim, Min-Soo;Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.155-160
    • /
    • 2021
  • This paper proposes an automatic method for detecting snore sound, one of the important symptoms of sleep apnea patients. In the proposed method, sound signals generated during sleep are input to detect a sound generation section, and a spectrogram transformed from the detected sound section is applied to a classifier based on a Convolutional Bidirectional Gated Recurrent Unit (CBGRU) with attention mechanism. The applied attention mechanism improved the snoring sound detection performance by extending the CBGRU model to learn discriminative feature representation for the snoring detection. The experimental results show that the proposed snoring detection method improves the accuracy by approximately 3.1 % ~ 5.5 % than existing method.

Burmese Sentiment Analysis Based on Transfer Learning

  • Mao, Cunli;Man, Zhibo;Yu, Zhengtao;Wu, Xia;Liang, Haoyuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.535-548
    • /
    • 2022
  • Using a rich resource language to classify sentiments in a language with few resources is a popular subject of research in natural language processing. Burmese is a low-resource language. In light of the scarcity of labeled training data for sentiment classification in Burmese, in this study, we propose a method of transfer learning for sentiment analysis of a language that uses the feature transfer technique on sentiments in English. This method generates a cross-language word-embedding representation of Burmese vocabulary to map Burmese text to the semantic space of English text. A model to classify sentiments in English is then pre-trained using a convolutional neural network and an attention mechanism, where the network shares the model for sentiment analysis of English. The parameters of the network layer are used to learn the cross-language features of the sentiments, which are then transferred to the model to classify sentiments in Burmese. Finally, the model was tuned using the labeled Burmese data. The results of the experiments show that the proposed method can significantly improve the classification of sentiments in Burmese compared to a model trained using only a Burmese corpus.

Character Recognition and Search for Media Editing (미디어 편집을 위한 인물 식별 및 검색 기법)

  • Park, Yong-Suk;Kim, Hyun-Sik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.519-526
    • /
    • 2022
  • Identifying and searching for characters appearing in scenes during multimedia video editing is an arduous and time-consuming process. Applying artificial intelligence to labor-intensive media editing tasks can greatly reduce media production time, improving the creative process efficiency. In this paper, a method is proposed which combines existing artificial intelligence based techniques to automate character recognition and search tasks for video editing. Object detection, face detection, and pose estimation are used for character localization and face recognition and color space analysis are used to extract unique representation information.

Subsurface anomaly detection utilizing synthetic GPR images and deep learning model

  • Ahmad Abdelmawla;Shihan Ma;Jidong J. Yang;S. Sonny Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.203-209
    • /
    • 2023
  • One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.

Pretext Task Analysis for Self-Supervised Learning Application of Medical Data (의료 데이터의 자기지도학습 적용을 위한 pretext task 분석)

  • Kong, Heesan;Park, Jaehun;Kim, Kwangsu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.38-40
    • /
    • 2021
  • Medical domain has a massive number of data records without the response value. Self-supervised learning is a suitable method for medical data since it learns pretext-task and supervision, which the model can understand the semantic representation of data without response values. However, since self-supervised learning performance depends on the expression learned by the pretext-task, it is necessary to define an appropriate Pretext-task with data feature consideration. In this paper, to actively exploit the unlabeled medical data into artificial intelligence research, experimentally find pretext-tasks that suitable for the medical data and analyze the result. We use the x-ray image dataset which is effectively utilizable for the medical domain.

  • PDF

Comparative Analysis of Recent Studies on Aspect-Based Sentiment Analysis

  • Faiz Ghifari Haznitrama;Ho-Jin Choi
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.647-649
    • /
    • 2023
  • Sentiment analysis as part of natural language processing (NLP) has received much attention following the demand to understand people's opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained subtask from sentiment analysis that aims to classify sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike the early works, the current ABSA utilizes many elements to improve performance and provide more details to produce informative results. These ABSA formulations have provided greater challenges for researchers. However, it is difficult to explore ABSA's works due to the many different formulations, terms, and results. In this paper, we conduct a comparative analysis of recent studies on ABSA. We mention some key elements, problem formulations, and datasets currently utilized by most ABSA communities. Also, we conduct a short review of the latest papers to find the current state-of-the-art model. From our observations, we found that span-level representation is an important feature in solving the ABSA problem, while multi-task learning and generative approach look promising. Finally, we review some open challenges and further directions for ABSA research in the future.

Classification of Objects using CNN-Based Vision and Lidar Fusion in Autonomous Vehicle Environment

  • G.komali ;A.Sri Nagesh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.67-72
    • /
    • 2023
  • In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.

A Study on Character Consistency Generated in [Midjourney V6] Technology

  • Xi Chen;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.142-147
    • /
    • 2024
  • The emergence of programs like Midjourney, particularly known for its text-to-image capability, has significantly impacted design and creative industries. Midjourney continually updates its database and algorithms to enhance user experience, with a focus on character consistency. This paper's examination of the latest V6 version of Midjourney reveals notable advancements in its characteristics and design principles, especially in the realm of character generation. By comparing V6 with its predecessors, this study underscores the significant strides made in ensuring consistent character portrayal across different plots and timelines.Such improvements in AI-driven character consistency are pivotal for storytelling. They ensure coherent and reliable character representation, which is essential for narrative clarity, emotional resonance, and overall effectiveness. This coherence supports a more immersive and engaging storytelling experience, fostering deeper audience connection and enhancing creative expression.The findings of this study encourage further exploration of Midjourney's capabilities for artistic innovation. By leveraging its advanced character consistency, creators can push the boundaries of storytelling, leading to new and exciting developments in the fusion of technology and art.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.