• Title/Summary/Keyword: Feature normalization

Search Result 156, Processing Time 0.023 seconds

A tracking of the moving objects using normalized hue distribution in HSI color model

  • Shin Chang Hoon;Lim Kang Mo;Lee Se Yeun;Kim Yoon Ho;Lee Joo shin
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.823-826
    • /
    • 2004
  • In this paper, A tracking of the moving objects using normalized hue distribution in HSI color model was proposed. Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area. Hue information of the detected moving area are normalized by 24 levels from $0^{\circ}$ to $3600^{\circ}A$ distance in between normalized levels with a hue distribution chart of the normalized moving objects is used for the identity distinction feature parameters of the moving objects. To examine proposed method in this paper, image of moving cars are obtained by setting up three cameras at different places every 1 km on outer motorway. The simulation results of identity distinction show that it is possible to distinct the identity a distance in between normalization levels of a hue distribution chart without background.

  • PDF

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

Feature Extraction for the Normalization of a 3D Human Face (3차원 얼굴 형상의 정규화를 위한 특징 추출)

  • 김익동;심재창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.310-312
    • /
    • 2003
  • 본 논문은 3차원 얼굴 형상을 이용한 얼굴 인식에 있어서, 정규화 과정에 사용될 얼굴의 특징 영역을 추출하는 방법을 제안한다. 3차원 얼굴 형상은 조명의 변화에 상관없이 얼굴의 특징 분석이 가능하고, 이를 이용한 얼굴 인식이 가능하다. 그러나, 입력된 형상에 따라 회전, 기울어진 정도, 그리고 좌우로 움직인 정도가 다르다 이런 특성을 고려하지 않고 추출된 특징들은 잘못된 인식 결과를 초래할 수 있다. 이런 이유로 입력시의 오류 돌을 바로잡는 정규화 과정이 필요하다. 정규화 과정에서는 얼굴의 기하학적인 특징(눈, 코, 입 등)을 이용하는 것이 일반적이다. 이들 중, 코는 3차원 얼굴 형상에서 두드러진 특징이 될 수 있다. 본 연구에서는 코의 실제 형상과 유사한 코 형상 추출 마스크를 사용하여 입력된 형상으로부터 코 영역을 추출하는 방법을 제안한다.

  • PDF

Real Time Crowd Estimation System Using Embedded Hardware (임베디드 하드웨어 기반 실시간 군중 혼잡도 추정 시스템)

  • Jeong, Cheol-Jun;Park, Kwang-Young;Park, Gooman
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.26-29
    • /
    • 2013
  • In order to estimate people crowdedness in public area, the texture based method or motion based method can be used. In this paper we have proposed a mixed method. By designating the region of interest, we made the degree of crowdedness more accurate. The feature normalization also reduced the image distortion which results from difference of camera angle. The proposed system was optimized to real time embedded hardware system.

Speech Parameters for the Robust Emotional Speech Recognition (감정에 강인한 음성 인식을 위한 음성 파라메터)

  • Kim, Weon-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

Channel Compensation technique using silence cepstral mean subtraction (묵음 구간의 평균 켑스트럼 차감법을 이용한 채널 보상 기법)

  • Woo, Seung-Ok;Yun, Young-Sun
    • Proceedings of the KSPS conference
    • /
    • 2005.04a
    • /
    • pp.49-52
    • /
    • 2005
  • Cepstral Mean Subtraction (CMS) makes effectively compensation for a channel distortion, but there are some shortcomings such as distortions of feature parameters, waiting for the whole speech sentence. By assuming that the silence parts have the channel characteristics, we consider the channel normalization using subtraction of cepstral means which are only obtained in the silence areas. If the considered techniques are successfully used for the channel compensation, the proposed method can be used for real time processing environments or time important areas. In the experiment result, however, the performance of our method is not good as CMS technique. From the analysis of the results, we found potentiality of the proposed method and will try to find the technique reducing the gap between CMS and ours method.

  • PDF

Automatic Extraction of Pseudo Invariant Features using Ordinal Rank Algorithm for Radiometric Normalization (Ordinal Rank 알고리즘을 이용한 자동 PIF 추출 - 변화탐지를 위한 상대방사정규화를 목적으로)

  • Han, You-Kyung;Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.213-218
    • /
    • 2008
  • 동일 지점을 촬영한 위성영상은 위성의 센서나 영상의 취득 시기, 지형의 상태 등에 따라 그 지점에 나타나는 화소값이 일정하지 않다. 이러한 영상은 영상간 모자이크나 변화 탐지 결과에 영향을 미칠 가능성이 높으므로 방사보정(또는 방사정규화)을 통해 화소값의 차이를 최소화시킬 필요가 있다. 본 연구는 선형회귀식을 적용한 상대 방사정규화에 초점을 맞추고 있으며, 선형회귀식 구성에 필요한 PIF(Pseudo Invariant Feature)를 자동으로 추출하기 위해 Ordinal Rank 알고리즘을 적용하였다. 이 방법을 통해 각 밴드별 후보 PIF를 추출하고, 공통으로 해당되는 최종 PIF를 추출할 수 있었다. RMSE(Root Mean Square Error), Dynamic range, Coefficient of variation 등을 통해 방사보정 후의 결과를 평가해보았다. 영상회귀를 이용한 방사보정알고리즘과의 비교를 통해 제안된 알고리즘이 갖는 장점을 확인하였다.

  • PDF

Development of a field-applicable Neural Network classifier for the classification of surface defects of cold rolled steel strips (냉연강판의 표면결함 분류를 위한 현장 적용용 신경망 분류기 개발)

  • Moon C.I.;Choi S.H.;Joo W.J.;Kim G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.61-62
    • /
    • 2006
  • A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.

  • PDF

Development of a Neural Network Classifier for the Classification of Surface Defects of Cold Rolled Strips (냉연강판의 표면결함 분류를 위한 신경망 분류기 개발)

  • Moon, Chang-In;Choi, Se-Ho;Kim, Gi-Bum;Kim, Cheol-Ho;Joo, Won-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.76-83
    • /
    • 2007
  • A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.

A Severe Hepatotoxicity by Antituberculosis Drug, and its Recovery in Oriental Hospital

  • Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • Objectives: To demonstrate a clinical course and feature of a female patient with a severe liver injury (DILI) during antituberculosis treatment for her intestinal tuberculosis, whom traditional Korean medicine completely recovered. Methods: A female patient with diagnosed as DILI by antituberculosis drugs had been treated with herbal drugs; and then the clinical outcome and biochemical parameters had been monitored. Result: A 45-year old female had taken antituberculosis drugs for about 2 months, and complained severe abdominal discomfort and dyspepsia. The RUCAM score was 10, which met the criteria for DILI (AST 584 IU/L, ALT 1212 IU/L, ALP 100 IU/L, and GGT 161 IU/L, total bilirubin 0.9 mg/dL). She had been treated with herbal drugs and acupuncture as inpatient and outpatient, and then her symptoms had been completely recovered with normalization of hepatic enzymes. Conclusion: This report provides a clinical characteristic for a severe hepatotoxicity induced by antituberculosis drugs, and showed an example of TKM-based application.