• Title/Summary/Keyword: Feature mapping

Search Result 334, Processing Time 0.029 seconds

Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method (파티클 필터 방법을 이용한 특징점과 로봇 위치의 동시 추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2012
  • This paper describes a SLAM method which estimates landmark locations and robot pose simultaneously. The particle filter can deal with nonlinearity of robot motion as well as the non Gaussian property of robot motion uncertainty and sensor error. The state to be estimated includes the locations of landmarks in addition to the robot pose. In the experiment, four beacons which transmit ultrasonic signal are used as landmarks. The robot receives the ultrasonic signals from the beacons and detects the distance to them. The method uses rang scanning sensor to build geometric feature of the environment. Since robot location and heading are estimated by the particle filter, the scanned range data can be converted to the geometric map. The performance of the method is compared with that of the deadreckoning and trilateration.

Features for Author Disambiguation (저자 식별을 위한 자질 비교)

  • Kang, In-Su;Lee, Seung-Woo;Jung, Han-Min;Kim, Pyung;Koo, Hee-Kwan;Lee, Mi-Kyung;Sung, Won-Kyung;Park, Dong-In
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.41-47
    • /
    • 2008
  • There exists a many-to-many mapping relationship between persons and their names. A person may have multiple names, and different persons may share the same name. These synonymous and homonymous names may severely deteriorate the recall and precision of the person search, respectively. This study addresses the characteristics of features for resolving homonymous author names appearing in citation data. As disambiguation features, previous works have employed citation-internal features such as co-authorship, titles of articles, titles of publications as well as citation-external features such as emails, affiliations, Web evidences. To the best of our knowledge, however, there has been no literature to deal with the influences of features on author disambiguation. This study analyzes the effect of individual features on author resolution using a large-scale test set for Korean.

Implementation of Real-time Vowel Recognition Mouse based on Smartphone (스마트폰 기반의 실시간 모음 인식 마우스 구현)

  • Jang, Taeung;Kim, Hyeonyong;Kim, Byeongman;Chung, Hae
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.531-536
    • /
    • 2015
  • The speech recognition is an active research area in the human computer interface (HCI). The objective of this study is to control digital devices with voices. In addition, the mouse is used as a computer peripheral tool which is widely used and provided in graphical user interface (GUI) computing environments. In this paper, we propose a method of controlling the mouse with the real-time speech recognition function of a smartphone. The processing steps include extracting the core voice signal after receiving a proper length voice input with real time, to perform the quantization by using the learned code book after feature extracting with mel frequency cepstral coefficient (MFCC), and to finally recognize the corresponding vowel using hidden markov model (HMM). In addition a virtual mouse is operated by mapping each vowel to the mouse command. Finally, we show the various mouse operations on the desktop PC display with the implemented smartphone application.

Accuracy Estimation of Electro-optical Camera (EOC) on KOMPSAT-1

  • Park, Woon-Yong;Hong, Sun-Houn;Song, Youn-Kyung
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2002
  • Remote sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation./sup 1)/ EOC (Electro -Optical Camera) sensor loaded on the KOMPSAT-1 (Korea Multi- Purpose Satellite-1) performs the earth remote sensing operation. EOC can get high-resolution images of ground distance 6.6m during photographing; it is possible to get a tilt image by tilting satellite body up to 45 degrees at maximum. Accordingly, the device developed in this study enables to obtain images by photographing one pair of tilt image for the same point from two different planes. KOMPSAT-1 aims to obtain a Korean map with a scale of 1:25,000 with high resolution. The KOMPSAT-1 developed automated feature extraction system based on stereo satellite image. It overcomes the limitations of sensor and difficulties associated with preprocessing quite effectively. In case of using 6, 7 and 9 ground control points, which are evenly spread in image, with 95% of reliability for horizontal and vertical position, 3-dimensional positioning was available with accuracy of 6.0752m and 9.8274m. Therefore, less than l0m of design accuracy in KOMPSAT-1 was achieved. Also the ground position error of ortho-image, with reliability of 95%, is 17.568m. And elevation error showing 36.82m was enhanced. The reason why elevation accuracy was not good compared with the positioning accuracy used stereo image was analyzed as a problem of image matching system. Ortho-image system is advantageous if accurate altitude and production of digital elevation model are desired. The Korean map drawn on a scale of 1: 25,000 by using the new technique of KOMPSAT-1 EOC image adopted in the present study produces accurate result compared to existing mapping techniques involving high costs with less efficiency.

  • PDF

Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

  • JANG, Tae-Soo;WEISS-SCHNEEWEISS, Hanna
    • Korean Journal of Plant Taxonomy
    • /
    • v.48 no.4
    • /
    • pp.260-277
    • /
    • 2018
  • The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3-44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061-152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

An Exam Prep App for the Secondary English Teacher Recruitment Exam with Brain-based Memory and Learning Principles (뇌 기억-학습 원리를 적용한 중등영어교사 임용시험 준비용 어플)

  • Lee, Hye-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.311-320
    • /
    • 2021
  • At present, the secondary school teacher employment examination(SSTEE) is the only gateway to become a national and public secondary teacher in Korea, and after the revision from the 2014 academic year, all the questions of the exam have been converted to supply-type test items, requiring more definitive, accurate, and solid answers. Compared to the selection-type test items that measure recognition memory, the supply-type questions, testing recall memory, require constant memorization and retrieval practices to furnish answers; however, there is not enough learning tools available to support the practices. At this juncture, this study invented a mobile app, called ONE PASS, for the SSTEE. By unpacking the functional mechanisms of the brain, the basis of cognitive processing, this ONE PASS app offers a set of tools that feature brain-based learning principles, such as a personalized study planner, motivation measurement scales, mind mapping, brainstorming, and sample questions from previous tests. This study is expected to contribute to the research on the development of learning contents for applications, and at the same time, it hopes to be of some help for candidates in their exam preparation process.

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Analysis of Computer Vision Application for CGRA Mapping : SIFT (재구성형 프로세서 맵핑을 위한 컴퓨터 비전 응용 분석 : SIFT)

  • Heo, Ingoo;Kim, Yongjoo;Lee, Jinyong;Cho, Yeongpil;Paek, Yunheung;Ko, Kwangman
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.5-8
    • /
    • 2011
  • 최근 영상이나 이미지로부터 사용자가 원하는 정보를 추출해 내고 재구성 하는 영상 인식, 증강 현실 등의 컴퓨터 비전(Computer Vision) 응용들이 각광을 받고 있다. 이러한 컴퓨터 비전 응용들은 그 동안 많은 알고리즘들의 연구를 통해 꾸준히 개선되고 향상되어 왔으나, 많은 계산량을 요구하기 때문에 임베디드 시스템에서는 널리 쓰이기 힘들었다. 하지만 최근 들어, 스마트폰 등의 모바일 기기에서의 계산 처리 능력이 향상 되고, 소비자 수요가 증가하면서, 이러한 컴퓨터 비전 응용은 점점 모바일 기기에서 널리 쓰이게 되고 있다. 하지만, 여전히 이러한 컴퓨터 응용을 수행하기 위한 계산양은 부족하기 때문에, 충분한 연산량을 제공하기 위한 방법론들이 다양하게 제시되고 있다. 본 논문에서는 이러한 컴퓨터 응용을 위한 프로세서 구조로서 재구성형 프로세서(Reconfigurable Architecture)를 제안한다. 컴퓨터 비전 응용 중 사물 인식 분야에서 널리 쓰이는 SIFT(Scale Invariant Feature Transformation)을 분석하고 이를 재구성형 프로세서에 맵핑하여 성능 향상을 꾀하였다. SIFT의 주요 커널들을 재구성형 프로세서 맵핑한 결과 최소 6.5배에서 최대 9.2배의 성능 향상을 이룰 수 있었다.

Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters

  • Yi, Kangwoo;Moon, Yong-Jae;Lim, Daye;Park, Eunsu;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts "Yes" or "No" for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.

  • PDF