• Title/Summary/Keyword: Feature map correlation

Search Result 35, Processing Time 0.02 seconds

Windowed Wavelet Stereo Matching Using Shift ability (이동성(shift ability)을 이용한 윈도우 웨이블릿 스테레오 정합)

  • 신재민;이호근;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1C
    • /
    • pp.56-63
    • /
    • 2003
  • In this paper, a wavelet-based stereo matching algorithm to obtain an accurate disparity map in wavelet transformed domain by using a shift ability property, a modified wavelet transform, the similarities for their sub-bands, and a hierarchical structure is proposed. New approaches for stereo matching by lots of feature information are to utilize translation-variant results of the sub-bands in the wavelet transformed domain because they cannot literally expect translation invariance in a system based on convolution and sub-sampling. After the similarity matching for each sub-band, we can easily find optimal matched-points because the sub-bands appearance of the shifted signals is definitely different from that of the original signal with no shift.

Comparison of Four Different Ordination Methods for Patterning Water Quality of Agricultural Reservoirs

  • Bae, Mi-Jung;Kwon, Yong-Su;Hwang, Soon-Jin;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.1-10
    • /
    • 2008
  • We patterned water quality of agricultural reservoirs according to the differences of six physico-chemical environmental factors (TN, TP, DO, BOD, COD, and SS) using four different ordination methods: Principal Components Analysis (PCA), Detrended Correspondence Analysis (DCA), Nonmetric Multidimensional Scaling (NMS), and Isometric Feature Mapping (Isomap). The data set was obtained from the water quality monitoring networks operated by the Ministry of Agriculture and Forestry and the Ministry of Environments. Chlorophyll-${\alpha}$ displayed the highest correlation with COD, followed by TP, BOD, SS, and TN (p<0.01), while negatively correlated with altitude and bank height of the reservoirs (p<0.01). Although four different ordination methods similarly patterned the reservoirs according to the gradient of nutrient concentration, PCA and NMS appeared to be the most efficient methods to pattern water quality of reservoirs based on the explanation power. Considering variable scores in the ordination map, the concentration of nutrients was positively correlated with Chl-${\alpha}$, while negatively correlated with altitude and bank height. These ordination methods may help to pattern agricultural reservoirs according to their water quality characteristics.

Ensemble Deep Learning Model using Random Forest for Patient Shock Detection

  • Minsu Jeong;Namhwa Lee;Byuk Sung Ko;Inwhee Joe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1080-1099
    • /
    • 2023
  • Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.

Verification of Precipitation Forecast Model and Application of Hydrology Model in Kyoungan-chun Basin (경안천 유역에 대한 강수예보모델의 검증 및 수문모형활용)

  • Choi, Ji-Hye;Kim, Young-Hwa;Nam, Kyung-Yeub;Oh, Sung-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.215-226
    • /
    • 2006
  • In this study, we performed verification of VSRF (Very Short Range Forecast of precipitation) model and application of NWSPC (National Weather Service PC) rainfall-runoff model in Kyoungan-chun basin. We used two methods for verification of VSRF model. The first method is a meteorological verification that evaluates the special quality feature for rain amount between AWS and VSRF model over Kyoungan-chun basin, while second method is a hydrological verification that compares the calculated Mean Area Precipitation (MAP) between AWS and VSRF Quantitatively. This study examines the usefulness of VSRF precipitation forecasting model data in NWSPC hydrological model. As a result, correlation coefficient is over 0.6 within 3 hour lead time. It represents that the forecast results from VSRF are useful for water resources application.

Development of a Deep Learning-based Long-term PredictionGenerative Model of Wind and Sea Conditions for Offshore Wind Farm Maintenance Optimization (해상풍력단지 유지보수 최적화 활용을 위한 풍황 및 해황 장기예측 딥러닝 생성모델 개발)

  • Sang-Hoon Lee;Dae-Ho Kim;Hyuk-Jin Choi;Young-Jin Oh;Seong-Bin Mun
    • Journal of Wind Energy
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 2022
  • In this paper, we propose a time-series generation methodology using a generative adversarial network (GAN) for long-term prediction of wind and sea conditions, which are information necessary for operations and maintenance (O&M) planning and optimal plans for offshore wind farms. It is a "Conditional TimeGAN" that is able to control time-series data with monthly conditions while maintaining a time dependency between time-series. For the generated time-series data, the similarity of the statistical distribution by direction was confirmed through wave and wind rose diagram visualization. It was also found that the statistical distribution and feature correlation between the real data and the generated time-series data was similar through PCA, t-SNE, and heat map visualization algorithms. The proposed time-series generation methodology can be applied to monthly or annual marine weather prediction including probabilistic correlations between various features (wind speed, wind direction, wave height, wave direction, wave period and their time-series characteristics). It is expected that it will be able to provide an optimal plan for the maintenance and optimization of offshore wind farms based on more accurate long-term predictions of sea and wind conditions by using the proposed model.