• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.031 seconds

Hierarchical stereo matching using feature extraction of an image

  • Kim, Tae-June;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.99-102
    • /
    • 2009
  • In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.

  • PDF

Video Segmentation and Key frame Extraction using Multi-resolution Analysis and Statistical Characteristic

  • Cho, Wan-Hyun;Park, Soon-Young;Park, Jong-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.457-469
    • /
    • 2003
  • In this paper, we have proposed the efficient algorithm that can segment the video scene change using a various statistical characteristics obtained from by applying the wavelet transformation for each frames. Our method firstly extracts the histogram features from low frequency subband of wavelet-transformed image and then uses these features to detect the abrupt scene change. Second, it extracts the edge information from applying the mesh method to the high frequency subband of transformed image. We quantify the extracted edge information as the values of variance characteristic of each pixel and use these values to detect the gradual scene change. And we have also proposed an algorithm how extract the proper key frame from segmented video scene. Experiment results show that the proposed method is both very efficient algorithm in segmenting video frames and also is to become the appropriate key frame extraction method.

Feature Extraction of Web Document using Association Word Mining (연관 단어 마이닝을 사용한 웹문서의 특징 추출)

  • 고수정;최준혁;이정현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2003
  • The previous studies to extract features for document through word association have the problems of updating profiles periodically, dealing with noun phrases, and calculating the probability for indices. We propose more effective feature extraction method which is using association word mining. The association word mining method, by using Apriori algorithm, represents a feature for document as not single words but association-word-vectors. Association words extracted from document by Apriori algorithm depend on confidence, support, and the number of composed words. This paper proposes an effective method to determine confidence, support, and the number of words composing association words. Since the feature extraction method using association word mining does not use the profile, it need not update the profile, and automatically generates noun phrase by using confidence and support at Apriori algorithm without calculating the probability for index. We apply the proposed method to document classification using Naive Bayes classifier, and compare it with methods of information gain and TFㆍIDF. Besides, we compare the method proposed in this paper with document classification methods using index association and word association based on the model of probability, respectively.

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

Kidney's feature point extraction based on edge detection using SIFT algorithm in ultrasound image (Edge detection 기반의 SIFT 알고리즘을 이용한 kidney 특징점 검출 방법)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.89-90
    • /
    • 2019
  • 본 논문에서는 ultrasound image Right Parasagittal Liver에 edge detection을 적용한 후, 특징점 검출 알고리즘인 Scale Invarient Feature Transfom(SIFT)를 이용하여 특징점의 위치를 살펴보도록 한다. edge detection 알고리즘으로는 Canny edge detection과 Prewitt edge detection을 적용하기로 한다.

  • PDF

Extraction of kidney's feature points by SIFT algorithm in ultrasound image (SIFT 알고리즘으로 kidney 특징점 검출)

  • Kim, Sung-Jung;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.313-314
    • /
    • 2019
  • 본 논문에서는 특징점 검출 알고리즘을 적용하여 ultrasound image에서 특징점을 검출하는 것과 object dectection을 위한 keypoints가 object에 올바르게 위치하는지를 검증하는 실험을 진행한다. 특징점 검출을 위한 알고리즘으로는 Scale Invariant Feature Transform(SIFT)과 Harris corner detection 을 적용하여 검증한다.

  • PDF

Feature Extraction for Vision Based Micromanipulation

  • Jang, Min-Soo;Lee, Seok-Joo;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.5-41
    • /
    • 2002
  • This paper presents a feature extraction algorithm for vision-based micromanipulation. In order to guarantee of the accurate micromanipulation, most of micromanipulation systems use vision sensor. Vision data from an optical microscope or high magnification lens have vast information, however, characteristics of micro image such as emphasized contour, texture, and noise are make it difficult to apply macro image processing algorithms to micro image. Grasping points extraction is very important task in micromanipulation because inaccurate grasping points can cause breakdown of micro gripper or miss of micro objects. To solve those problems and extract grasping points for micromanipulation...

  • PDF

A study on segmentation of medical image using fuzzy set theory (퍼지 이론을 이용한 의료 영상 특징 추출에 관한 연구)

  • 김형석;한영오;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.741-745
    • /
    • 1991
  • This paper describes a feature extraction in digitized chest X-ray image and CT head Image. There are Extraction, Thresholding, Region G rowing, Split-Merge and Relaxation in feature extraction technique. In this study, Region Growing System was realized and Fuzzy Set Theory was applied in order to extract the vague region which the conventional method has difficulties in extracting. The performance of proposed algorithm was proved by being applied to chest X-ray image and CT head image.

  • PDF

Feature Extraction of Disease Region in Stomach Images Based on DCT (DCT기반 위장영상 질환부위의 특징추출)

  • Ahn, Byeoung-Ju;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • In this paper, we present an algorithm to extract features about disease region in digital stomach images. For feature extraction, DCT coefficients of gastrointestinal imaging matrix was obtained. DCT coefficent matrix is concentrated energy in low frequency region, we were extracted 128 feature parameters in low frequency region. Extracted feature parameters can using for differential compression of PACS and, can using for input parameter in CAD.

Feature Extraction of Letter Using Pattern Classifier Neural Network (패턴분류 신경회로망을 이용한 문자의 특징 추출)

  • Ryoo Young-Jae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.102-106
    • /
    • 2003
  • This paper describes a new pattern classifier neural network to extract the feature from a letter. The proposed pattern classifier is based on relative distance, which is measure between an input datum and the center of cluster group. So, the proposed classifier neural network is called relative neural network(RNN). According to definitions of the distance and the learning rule, the structure of RNN is designed and the pseudo code of the algorithm is described. In feature extraction of letter, RNN, in spite of deletion of learning rate, resulted in the identical performance with those of winner-take-all(WTA), and self-organizing-map(SOM) neural network. Thus, it is shown that RNN is suitable to extract the feature of a letter.