• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.028 seconds

The Algorithm Design and Implement of Microarray Data Classification using the Byesian Method (베이지안 기법을 적용한 마이크로어레이 데이터 분류 알고리즘 설계와 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2283-2288
    • /
    • 2006
  • As development in technology of bioinformatics recently makes it possible to operate micro-level experiments, we can observe the expression pattern of total genome through on chip and analyze the interactions of thousands of genes at the same time. Thus, DNA microarray technology presents the new directions of understandings for complex organisms. Therefore, it is required how to analyze the enormous gene information obtained through this technology effectively. In this thesis, We used sample data of bioinformatics core group in harvard university. It designed and implemented system that evaluate accuracy after dividing in class of two using Bayesian algorithm, ASA, of feature extraction method through normalization process, reducing or removing of noise that occupy by various factor in microarray experiment. It was represented accuracy of 98.23% after Lowess normalization.

Advanced Seam Finding Algorithm for Stitching of 360 VR Images (개선된 Seam Finder를 이용한 360 VR 이미지 스티칭 기술)

  • Son, Hui-Jeong;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.656-668
    • /
    • 2018
  • VR (Virtual Reality) is one of the important research topics in the field of multimedia application system. The quality of the visual data composed from multiple pictures depends on the performance of stitching technique. The stitching module consists of feature extraction, mapping of those, warping, seam finding, and blending. In this paper, we proposed a preprocessing scheme to provide the efficient mask for seam finder. Incorporating of the proposed mask removes the distortion, such as ghost and blurring, in the stitched image. The simulation results show that the proposed algorithm outperforms other conventional techniques in the respect of the subjective quality and the computational complexity.

Classification Protein Subcellular Locations Using n-Gram Features (단백질 서열의 n-Gram 자질을 이용한 세포내 위치 예측)

  • Kim, Jinsuk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.12-16
    • /
    • 2007
  • The function of a protein is closely co-related with its subcellular location(s). Given a protein sequence, therefore, how to determine its subcellular location is a vitally important problem. We have developed a new prediction method for protein subcellular location(s), which is based on n-gram feature extraction and k-nearest neighbor (kNN) classification algorithm. It classifies a protein sequence to one or more subcellular compartments based on the locations of top k sequences which show the highest similarity weights against the input sequence. The similarity weight is a kind of similarity measure which is determined by comparing n-gram features between two sequences. Currently our method extract penta-grams as features of protein sequences, computes scores of the potential localization site(s) using kNN algorithm, and finally presents the locations and their associated scores. We constructed a large-scale data set of protein sequences with known subcellular locations from the SWISS-PROT database. This data set contains 51,885 entries with one or more known subcellular locations. Our method show very high prediction precision of about 93% for this data set, and compared with other method, it also showed comparable prediction improvement for a test collection used in a previous work.

  • PDF

Digital video watermarking using fingerprint data (동영상 스트리밍 인증을 위한 지문 기반 워터마킹)

  • Jung, Soo-Yeun;Lee, Dong-Eun;Lee, Seong-Won;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.43-50
    • /
    • 2007
  • In this paper we propose a method that identifies users at H.264 streaming using watermarking with fingerprints. The watermark can efficiently reduce the potential danger of forgery or alteration. Especially a biometric watermark has various advantages. Among entire biometric characteristics, the fingerprint is the most convenient and economical. In this paper we propose a novel fingerprint-based watermarking technique that can survive under very low bit-rate compression. The proposed algorithm consists of enhancement of a fingerprint image, the watermark generation using the extracted feature coordinates, watermark insertion using discrete wavelet transform, and authentication. The proposed algorithm can achieve robust watermark extraction against 0.264 compressed videos.

EAR: Enhanced Augmented Reality System for Sports Entertainment Applications

  • Mahmood, Zahid;Ali, Tauseef;Muhammad, Nazeer;Bibi, Nargis;Shahzad, Imran;Azmat, Shoaib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6069-6091
    • /
    • 2017
  • Augmented Reality (AR) overlays virtual information on real world data, such as displaying useful information on videos/images of a scene. This paper presents an Enhanced AR (EAR) system that displays useful statistical players' information on captured images of a sports game. We focus on the situation where the input image is degraded by strong sunlight. Proposed EAR system consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player and face detection, face recognition, and players' statistics display. First, an algorithm based on multi-scale retinex is proposed for image enhancement. Then, to detect players' and faces', we use adaptive boosting and Haar features for feature extraction and classification. The player face recognition algorithm uses boosted linear discriminant analysis to select features and nearest neighbor classifier for classification. The system can be adjusted to work in different types of sports where the input is an image and the desired output is display of information nearby the recognized players. Simulations are carried out on 2096 different images that contain players in diverse conditions. Proposed EAR system demonstrates the great potential of computer vision based approaches to develop AR applications.

A Non-linear Variant of Improved Robust Fuzzy PCA (잡음 민감성이 향상된 주성분 분석 기법의 비선형 변형)

  • Heo, Gyeong-Yong;Seo, Jin-Seok;Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.15-22
    • /
    • 2011
  • Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction while maintaining most of the variation in data. Although PCA has been applied in many areas successfully, it is sensitive to outliers and only valid for Gaussian distributions. Several variants of PCA have been proposed to resolve noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA, however, is still a linear algorithm that cannot accommodate non-Gaussian distributions. In this paper, a non-linear algorithm that combines RF-PCA2 and kernel PCA (K-PCA), called improved robust kernel fuzzy PCA (RKF-PCA2), is introduced. The kernel methods make it to accommodate non-Gaussian distributions. RKF-PCA2 inherits noise robustness from RF-PCA2 and non-linearity from K-PCA. RKF-PCA2 outperforms previous methods in handling non-Gaussian distributions in a noise robust way. Experimental results also support this.

Spectral Quality Enhancement of Pan-Sharpened Satellite Image by Using Modified Induction Technique (수정된 영상 유도 기법을 통한 융합영상의 분광정보 향상 알고리즘)

  • Choi, Jae-Wan;Kim, Hyung-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • High-spatial resolution remote sensing satellites (IKONOS-2, QuickBird and KOMPSAT-2) have provided low-spatial resolution multispectral images and high-spatial resolution panchromatic images. Image fusion or Pan-sharpening is a very important in that it aims at using a satellite image with various applications such as visualization and feature extraction through combining images that have a different spectral and spatial resolution. Many image fusion algorithms are proposed, most methods could not preserve the spectral information of original multispectral image after image fusion. In order to solve this problem, modified induction technique which reduce the spectral distortion of fused image is developed. The spectral distortion is adjusted by the comparison between the spatially degraded pan-sharpened image and original multispectral image and our algorithm is evaluated by QuickBird satellite imagery. In the experiment, pan-sharpened image by various methods can reduce spectral distortion when our algorithm is applied to the fused images.

  • PDF

Text Detection and Recognition in Outdoor Korean Signboards for Mobile System Applications (모바일 시스템 응용을 위한 실외 한국어 간판 영상에서 텍스트 검출 및 인식)

  • Park, J.H.;Lee, G.S.;Kim, S.H.;Lee, M.H.;Toan, N.D.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.44-51
    • /
    • 2009
  • Text understand in natural images has become an active research field in the past few decades. In this paper, we present an automatic recognition system in Korean signboards with a complex background. The proposed algorithm includes detection, binarization and extraction of text for the recognition of shop names. First, we utilize an elaborate detection algorithm to detect possible text region based on edge histogram of vertical and horizontal direction. And detected text region is segmented by clustering method. Second, the text is divided into individual characters based on connected components whose center of mass lie below the center line, which are recognized by using a minimum distance classifier. A shape-based statistical feature is adopted, which is adequate for Korean character recognition. The system has been implemented in a mobile phone and is demonstrated to show acceptable performance.

Emotion Recognition Based on Facial Expression by using Context-Sensitive Bayesian Classifier (상황에 민감한 베이지안 분류기를 이용한 얼굴 표정 기반의 감정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.653-662
    • /
    • 2006
  • In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.

SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack (건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구)

  • Lee, Pyeong-Yeon;Kwon, Sanguk;Kang, Deokhun;Han, Seungyun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.