• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.027 seconds

Image Deduplication Based on Hashing and Clustering in Cloud Storage

  • Chen, Lu;Xiang, Feng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1448-1463
    • /
    • 2021
  • With the continuous development of cloud storage, plenty of redundant data exists in cloud storage, especially multimedia data such as images and videos. Data deduplication is a data reduction technology that significantly reduces storage requirements and increases bandwidth efficiency. To ensure data security, users typically encrypt data before uploading it. However, there is a contradiction between data encryption and deduplication. Existing deduplication methods for regular files cannot be applied to image deduplication because images need to be detected based on visual content. In this paper, we propose a secure image deduplication scheme based on hashing and clustering, which combines a novel perceptual hash algorithm based on Local Binary Pattern. In this scheme, the hash value of the image is used as the fingerprint to perform deduplication, and the image is transmitted in an encrypted form. Images are clustered to reduce the time complexity of deduplication. The proposed scheme can ensure the security of images and improve deduplication accuracy. The comparison with other image deduplication schemes demonstrates that our scheme has somewhat better performance.

A Study on the Wear Condition Diagnosis of Grinding Wheel in Micro Drill-bit Grinding System (마이크로 드릴비트 연마 시스템 연삭휠의 마모 진단 연구)

  • Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.77-85
    • /
    • 2022
  • In this study, to diagnose the grinding state of a micro drill bit, a sensor attachment location was selected through random vibration analysis of the grinding unit of the micro drill-bit grinding system. In addition, the vibration data generated during the drill bit grinding were collected from the grinding unit for the grinding wheels under the steady and worn conditions, and data feature extraction and dimension reduction were performed. The wear of the micro-drill-bit grinding wheel was diagnosed by applying KNN, a machine-learning algorithm. The classification model showed excellent performance, with an accuracy of 99.2%. The precision, recall and f1-score were higher than 99% in both the steady and wear conditions.

SAR Image Target Detection based on Attention YOLOv4 (어텐션 적용 YOLOv4 기반 SAR 영상 표적 탐지 및 인식)

  • Park, Jongmin;Youk, Geunhyuk;Kim, Munchurl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.443-461
    • /
    • 2022
  • Target Detection in synthetic aperture radar(SAR) image is critical for military and national defense. In this paper, we propose YOLOv4-Attention architecture which adds attention modules to YOLOv4 backbone architecture to complement the feature extraction ability for SAR target detection with high accuracy. For training and testing our framework, we present new SAR embedding datasets based on MSTAR SAR public datasets which are about poor environments for target detection such as various clutter, crowded objects, various object size, close to buildings, and weakness of signal-to-clutter ratio. Experiments show that our Attention YOLOv4 architecture outperforms original YOLOv4 architecture in SAR image target detection tasks in poor environments for target detection.

Design of an efficient learning-based face detection system (학습기반 효율적인 얼굴 검출 시스템 설계)

  • Kim Hyunsik;Kim Wantae;Park Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Lightweight high-precision pedestrian tracking algorithm in complex occlusion scenarios

  • Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.840-860
    • /
    • 2023
  • Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.

Construction of Customer Appeal Classification Model Based on Speech Recognition

  • Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.258-266
    • /
    • 2023
  • Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning (GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지)

  • Zhou, Yu;Lee, Seungeun;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF

Design of a Contactless Access Security System using Palm Creases and Palm Vein Pattern Matching (손금과 정맥혈관 패턴매칭을 이용한 비접촉 출입 보안시스템 설계)

  • Ki-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.327-334
    • /
    • 2024
  • In this paper, we developed a system with a near-infrared LED light source with a wavelength of 950nm to acquire palm vein images and a white LED light source to acquire palm creases based on Raspberry Pi. In addition, we implemented a unique pattern-extractable image processing technology that can prevent counterfeiting and enhance security of mixed creases and palmprints through image pre-processing (Gray scaling, Histogram Equalization, Blurring, Thresholding, Thinning) for the acquired vein and palm images, and secured a source technology that can be used in a security-enhanced system.