• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.031 seconds

Robust Recognition of 3D Object Using Attributed Relation Graph of Silhouette's (실루엣 기반의 관계그래프 이용한 강인한 3차원 물체 인식)

  • Kim, Dae-Woong;Baek, Kyung-Hwan;Hahn, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.103-110
    • /
    • 2008
  • This paper presents a new approach of recognizing a 3D object using a single camera, based on the extended convex hull of its silhouette. It aims at minimizing the DB size and simplifying the processes for matching and feature extraction. For this purpose, two concepts are introduced: extended convex hull and measurable region. Extended convex hull consists of convex curved edges as well as convex polygons. Measurable region is the cluster of the viewing vectors of a camera represented as the points on the orientation sphere from which a specific set of surfaces can be measured. A measurable region is represented by the extended convex hull of the silhouette which can be obtained by viewing the object from the center of the measurable region. Each silhouette is represented by a relation graph where a node describes an edge using its type, length, reality, and components. Experimental results are included to show that the proposed algorithm works efficiently even when the objects are overlapped and partially occluded. The time complexity for searching the object model in the database is O(N) where N is the number of silhouette models.

Objects Recognition and Intelligent Walking for Quadruped Robots based on Genetic Programming (4족 보행로봇의 물체 인식 및 GP 기반 지능적 보행)

  • Kim, Young-Kyun;Hyun, Soo-Hwan;Jang, Jae-Young;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.603-609
    • /
    • 2010
  • This paper introduces an objects recognition algorithm based on SURF(Speeded Up Robust Features) and GP(Genetic Programming) based gaits generation. Combining both methods, a recognition based intelligent walking for quadruped robots is proposed. The gait of quadruped robots is generated by means of symbolic regression for each joint trajectories using GP. A position and size of target object are recognized by SURF which enables high speed feature extraction, and then the distance to the object is calculated. Experiments for objects recognition and autonomous walking for quadruped robots are executed for ODE based Webots simulation and real robot.

Fast Thinning Algorithm based on Improved SOG($SOG^*$) (개선된 SOG 기반 고속 세선화 알고리즘($SOG^*$))

  • Lee, Chan-Hui;Jeong, Sun-Ho
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.651-656
    • /
    • 2001
  • In this paper, we propose Improved Self-Organized Graph(Improved SOG:$SOG^*$)thinning method, which maintains the excellent thinning results of Self-organized graph(SOG) built from Self-Organizing features map and improves the performance of modified SOG using a new incremental learning method of Kohonen features map. In the experiments, this method shows the thinning results equal to those of SOG and the time complexity O((logM)3) superior to it. Therefore, the proposed method is useful for the feature extraction from digits and characters in the preprocessing step.

  • PDF

Feature extraction based on DWT and GA for Gesture Recognition of EPIC Sensor Signals (EPIC 센서 신호의 제스처 인식을 위한 이산 웨이블릿 변환과 유전자 알고리즘 기반 특징 추출)

  • Ji, Sang-Hun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Young-Chul
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.612-615
    • /
    • 2016
  • 본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.

Obstacle Classification Method using Multi Feature Comparison Based on Single 2D LiDAR (단일 2차원 라이다 기반의 다중 특징 비교를 이용한 장애물 분류 기법)

  • Lee, Moohyun;Hur, Soojung;Park, Yongwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • We propose an obstacle classification method using multi-decision factors and decision sections based on Single 2D LiDAR. The existing obstacle classification method based on single 2D LiDAR has two specific advantages: accuracy and decreased calculation time. However, it was difficult to classify obstacle type, and therefore accurate path planning was not possible. To overcome this problem, a method of classifying obstacle type based on width data was proposed. However, width data was not sufficient to enable accurate obstacle classification. The proposed algorithm of this paper involves the comparison between decision factor and decision section to classify obstacle type. Decision factor and decision section was determined using width, standard deviation of distance, average normalized intensity, and standard deviation of normalized intensity data. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 2D LiDAR-based method, thus demonstrating the possibility of obstacle type classification using single 2D LiDAR.

Study of Feature Extraction Algorithm for Harmful word Filtering (유해어 필터링을 위한 자질어 추출 알고리즘에 관한 연구)

  • Jeong Jung-Hoon;Lee Won-Hee;Lee Shin-Won;An Don-Gun;Chung Sung-Jong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.7-9
    • /
    • 2006
  • 유해 정보란 정보의 홍수 속에서 무차별적으로 제공되는 음란, 폭력 등의 내용을 담고 있는 정보를 말한다. 이러한 유해 정보들로부터 청소년 등 사회적으로 보호를 받아야 할 인터넷 이용자들을 보호하기 위한 장치가 필요하다. 현재 다양한 방법이 제안되고 연구되고 있다. 본 연구에서는 유해 문서의 필터링을 기법 중 키워드 필터링에서 사용되는 유해어 사전을 위한 자질어 추출 알고리즘에 대해서 비교/연구하였다. 키워드 필터링에서 자질어는 필터링의 성능에 많은 영향을 미친다. 따라서 필터링의 성능을 높이기 위한 자질어 추출 알고리즘 선택은 매우 중요하다. 이에 본 논문에서는 다양한 알고리즘을 비교 분석하여 정확하고 효율적인 자질어 추출 알고리즘 조합을 찾고자 하였다. 그 결과 CHI/TF-IDF 조합이 높은 성능을 보였으며 92%의 정확도를 얻을 수 있었다.

  • PDF

Traffic Light and Speed Sign Recognition by using Hierarchical Application of Color Segmentation and Object Feature Information (색상분할 및 객체 특징정보의 계층적 적용에 의한 신호등 및 속도 표지판 인식)

  • Lee, Kang-Ho;Bang, Min-Young;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.207-214
    • /
    • 2010
  • A method of the region extraction and recognition of a traffic light and speed sign board in the real road environment is proposed. Traffic light was recognized by using brightness and color information based on HSI color model. Speed sign board was extracted by measuring red intensity from the HSI color information We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. The proposed algorithm shows a robust recognition rate in the image sequence which includes traffic light and speed sign board.

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

A Study of Motion Recognition Using IR-UWB Radar (IR-UWB 레이다를 이용한 모션 인식에 관한 연구)

  • Lee, Jin-Seop;Yoon, Jung-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.236-242
    • /
    • 2019
  • Ultra-wideband(UWB) is a technology that can transmit and receive signals at high speeds using a very short signal of wideband of several GHz, and has been recently used in the field of radar technology. Impulse radio(IR)-UWB radar is used in the field of motion recognition with high resolution. In this work, we studied motion recognition using IR-UWB radar. We constructed a development environment to acquire data about motion and implemented a signal processing algorithm for performance enhancement. Based on the signal processing result, the performance was verified through feature extraction and learning of motion.

Character Classification with Triangular Distribution

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.209-217
    • /
    • 2019
  • Due to the development of artificial intelligence and image recognition technology that play important roles in the field of 4th industry, office automation systems and unmanned automation systems are rapidly spreading in human society. The proposed algorithm first finds the variances of the differences between the tile values constituting the learning characters and the experimental character and then recognizes the experimental character according to the distribution of the three learning characters with the smallest variances. In more detail, for 100 learning data characters and 10 experimental data characters, each character is defined as the number of black pixels belonging to 15 tile areas. For each character constituting the experimental data, the variance of the differences of the tile values of 100 learning data characters is obtained and then arranged in the ascending order. After that, three learning data characters with the minimum variance values are selected, and the final recognition result for the given experimental character is selected according to the distribution of these character types. Moreover, we compare the recognition result with the result made by a neural network of basic structure. It is confirmed that satisfactory recognition results are obtained through the processes that subdivide the learning characters and experiment characters into tile sizes and then select the recognition result using variances.