• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.035 seconds

Feature Extraction and Classification of Target from Jet Engine Modulation Signal Using Frequency Masking (제트 엔진 변조신호에서 주파수 마스킹을 이용한 표적의 특징 추출 및 식별)

  • Kim, Si-Ho;Kim, Chan-Hong;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • This paper deals with the method to classify the aircraft target by analyzing its JEM signal. We propose the method to classify the engine model by analyzing JEM spectrum using the harmonic frequency mask generated from the blade information of jet engine. The proposed method does not need the complicated logic algorithm to find the chopping frequency in each rotor stage and the pre-simulated engine spectrum DB used in the previous methods. In addition, we propose the method to estimate the precise spool rate and it reduces the error in estimating the number of blades or in calculating the harmonic frequency of frequency mask.

Analyzing the Acoustic Elements and Emotion Recognition from Speech Signal Based on DRNN (음향적 요소분석과 DRNN을 이용한 음성신호의 감성 인식)

  • Sim, Kwee-Bo;Park, Chang-Hyun;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Recently, robots technique has been developed remarkably. Emotion recognition is necessary to make an intimate robot. This paper shows the simulator and simulation result which recognize or classify emotions by learning pitch pattern. Also, because the pitch is not sufficient for recognizing emotion, we added acoustic elements. For that reason, we analyze the relation between emotion and acoustic elements. The simulator is composed of the DRNN(Dynamic Recurrent Neural Network), Feature extraction. DRNN is a learning algorithm for pitch pattern.

High-Performance Vision Engine for Intelligent Vehicles (지능형 자동차용 고성능 영상인식 엔진)

  • Lyuh, Chun-Gi;Chun, Ik-Jae;Suk, Jung-Hee;Roh, Tae Moon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.535-542
    • /
    • 2013
  • In this paper, we proposed a advanced hardware engine architecture for high speed and high detection rate image recognitions. We adopted the HOG-LBP feature extraction algorithm and more parallelized architecture in order to achieve higher detection rate and high throughput. As a simulation result, the designed engine which can search about 90 frames per second detects 97.7% of pedestrians when false positive per window is $10^{-4}$.

Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA (Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP (DSP를 이용한 자동차 소음에 강인한 음성인식기 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF

Development of a Read-time Voice Dialing System Using Discrete Hidden Markov Models (이산 HM을 이용한 실시간 음성인식 다이얼링 시스템 개발)

  • Lee, Se-Woong;Choi, Seung-Ho;Lee, Mi-Suk;Kim, Hong-Kook;Oh, Kwang-Cheol;Kim, Ki-Chul;Lee, Hwang-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.89-95
    • /
    • 1994
  • This paper describes development of a real-time voice dialing system which can recognize around one hundred word vocabularies in speaker independent mode. The voice recognition algorithm in this system is implemented on a DSP board with a telephone interface plugged in an IBM PC AT/486. In the DSP board, procedures for feature extraction, vector quantization(VQ), and end-point detection are performed simultaneously in every 10 msec frame interval to satisfy real-time constraints after detecting the word starting point. In addition, we optimize the VQ codebook size and the end-point detection procedure to reduce recognition time and memory requirement. The demonstration system has been displayed in MOBILAB of the Korean Mobile Telecom at the Taejon EXPO'93.

  • PDF

Fast Lookup Table-Based Feature Extraction Algorithm for Mobile Environment (모바일 환경에 응용 가능한 빠른 검색 테이블기반 특징 추출 알고리즘)

  • Park, Sang-Hyuk;Yang, Jun-Yeong;Seong, Ha-Cheon;Byun, Hye-Ran;Lim, Yeong-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.492-497
    • /
    • 2008
  • 최근 모바일 장치의 사용 영역 확대와 더불어 기기장치 내의 다양한 영상 데이터에 대한 효율적인 관리와 검색에 관한 기술 연구가 요구되고 있다. 그러나 모바일 장치의 낮은 CPU성능과 한정적인 메모리를 극복하기 위해 저 용량 그리고 고속의 검색 엔진 개발이 요구된다. 이 문제를 해결하기 위하여, 본 논문에서는 RGB 색상 공간에서 HSV 색상 공간 상의 36개의 특징 값으로 변환하는 검색 테이블 방법을 제안한다. 제안하는 방법에 의해, 입력 영상은 검색 테이블에 기반하여 빠르게 색상과 위치에 대한 두개의 특징 히스토그램으로 변환된다. 여기서, 특징추출에 필요한 연산은 본 논문의 실험 결과에서 보는 바와 같이 매우 낮다. 제안하는 방법을 이용하여, 우리는 영상, 색상 그리고 블랍에 의한 질의가 가능한 모바일 기반 영상 검색 시스템을 구현하였다. 본 논문에서 제시하는 실험결과는 제안하는 방법이 충분히 모바일에서 운용 가능한 가볍고 빠른 방법임을 알 수 있다.

  • PDF

Development of Audio Melody Extraction and Matching Engine for MIREX 2011 tasks

  • Song, Chai-Jong;Jang, Dalwon;Lee, Seok-Pil;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.164-166
    • /
    • 2012
  • In this paper, we proposed a method for extracting predominant melody of polyphonic music based on harmonic structure. Harmonic structure is an important feature parameter of monophonic signal that has spectral peaks at the integer multiples of its fundamental frequency. We extract all fundamental frequency candidates contained in the polyphonic signal by verifying the required condition of harmonic structure. Then, we combine those harmonic peaks corresponding to each extracted fundamental frequency and assign a rank to each after calculating its harmonic average energy. We run pitch tracking based on the rank of extracted fundamental frequency and continuity of fundamental frequency, and determine the predominant melody. For the query by singing/humming (QbSH) task, we proposed Dynamic Time Warping (DTW) based matching engine. Our system reduces false alarm by combining the distances of multiple DTW processes. To improve the performance, we introduced the asymmetric sense, pitch level compensation, and distance intransitiveness to DTW algorithm.

  • PDF

Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption

  • Chung, Jong-Moon;Park, Yong-Suk;Park, Jong-Hong;Cho, HyoungJun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3090-3102
    • /
    • 2015
  • The accuracy of an augmented reality (AR) application is highly dependent on the resolution of the object's image and the device's computational processing capability. Naturally, a mobile smart device equipped with a high-resolution camera becomes the best platform for portable AR services. AR applications require significant energy consumption and very fast response time, which are big burdens to the smart device. However, there are very few ways to overcome these burdens. Computation offloading via mobile cloud computing has the potential to provide energy savings and enhance the performance of applications executed on smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR applications is considered in order to determine optimal offloading points that satisfy the required quality of experience (QoE) while consuming minimum energy of the smart device. AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to determine the optimal AR cloud computational offloading point based on conditions of the smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy savings and processing time are explored also taking network congestion and server load conditions into account.

Development of a Low-cost Industrial OCR System with an End-to-end Deep Learning Technology

  • Subedi, Bharat;Yunusov, Jahongir;Gaybulayev, Abdulaziz;Kim, Tae-Hyong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • Optical character recognition (OCR) has been studied for decades because it is very useful in a variety of places. Nowadays, OCR's performance has improved significantly due to outstanding deep learning technology. Thus, there is an increasing demand for commercial-grade but affordable OCR systems. We have developed a low-cost, high-performance OCR system for the industry with the cheapest embedded developer kit that supports GPU acceleration. To achieve high accuracy for industrial use on limited computing resources, we chose a state-of-the-art text recognition algorithm that uses an end-to-end deep learning network as a baseline model. The model was then improved by replacing the feature extraction network with the best one suited to our conditions. Among the various candidate networks, EfficientNet-B3 has shown the best performance: excellent recognition accuracy with relatively low memory consumption. Besides, we have optimized the model written in TensorFlow's Python API using TensorFlow-TensorRT integration and TensorFlow's C++ API, respectively.