• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.027 seconds

Target Position Estimation using Wireless Sensor Node Signal Processing based on Lifting Scheme Wavelet Transform (리프팅 스킴 웨이블릿 변환 기반의 무선 센서 노드 신호처리를 이용한 표적 위치 추정)

  • Cha, Dae-Hyun;Lee, Tae-Young;Hong, Jin-Keun;Han, Kun-Hui;Hwang, Chan-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1272-1277
    • /
    • 2010
  • Target detection and tracking wireless sensor network must have various signal processing ability. Wireless sensor nodes need to light weight signal processing algorithm because of energy constraints and communication bandwidth constraints. General signal processing algorithm of wireless sensor node consists of de-noising, received signal strength computation, feature extraction and signal compression. Wireless sensor network life-time and performance of target detection and classification depend on sensor node signal processing. In this paper, we propose energy efficient signal processing algorithm using wavelet transform. The proposed method estimates exact target position.

Automatic Tracking of Retinal Vessels by Analyzing Local Feature Points in IndoCyanine Green Retinal Images (ICG 망막영상에서 국부적 특징점 분석에 의한 혈관의 자동 추적)

  • Lim, Moon-Chul;Kim, Woo-Saeng
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • During the last few years, the extraction and reconstruction of the blood vessels in the medical image has been actively researched and the analysis for the retinal vessel structure has provided important information for diagnosis and remedy of the retinopathy patients. In this research, we propose the algorithm that tracks automatically the entire retinal vessel in retinal image acquired by the ICG(IndoCyanine Green) technology. This algorithm extracts contours and centers by estimating the local maxima and processing directions and detects bifurcations and junctions by comparing direction components of the local maxima from the gradient magnitude profile of each blood vessel. We present experimental results that the entire blood vessel is automatically reconstructed and is excellent in accuracy and connectivity after applying our algorithm to the ICG retinal images of patients.

The Character Area Extraction and the Character Segmentation on the Color Document (칼라 문서에서 문자 영역 추출믹 문자분리)

  • 김의정
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.444-450
    • /
    • 1999
  • This paper deals with several methods: the clustering method that uses k-means algorithm to abstract the area of characters on the image document and the distance function that suits for the HIS coordinate system to cluster the image. For the prepossessing step to recognize this, or the method of characters segmentate, the algorithm to abstract a discrete character is also proposed, using the linking picture element. This algorithm provides the feature that separates any character such as the touching or overlapped character. The methods of projecting and tracking the edge have so far been used to segment them. However, with the new method proposed here, the picture element extracts a discrete character with only one-time projection after abstracting the character string. it is possible to pull out it. dividing the area into the character and the rest (non-character). This has great significance in terms of processing color documents, not the simple binary image, and already received verification that it is more advanced than the previous document processing system.

  • PDF

Development of The Irregular Radial Pulse Detection Algorithm Based on Statistical Learning Model (통계적 학습 모형에 기반한 불규칙 맥파 검출 알고리즘 개발)

  • Bae, Jang-Han;Jang, Jun-Su;Ku, Boncho
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.185-194
    • /
    • 2020
  • Arrhythmia is basically diagnosed with the electrocardiogram (ECG) signal, however, ECG is difficult to measure and it requires expert help in analyzing the signal. On the other hand, the radial pulse can be measured with easy and uncomplicated way in daily life, and could be suitable bio-signal for the recent untact paradigm and extensible signal for diagnosis of Korean medicine based on pulse pattern. In this study, we developed an irregular radial pulse detection algorithm based on a learning model and considered its applicability as arrhythmia screening. A total of 1432 pulse waves including irregular pulse data were used in the experiment. Three data sets were prepared with minimal preprocessing to avoid the heuristic feature extraction. As classification algorithms, elastic net logistic regression, random forest, and extreme gradient boosting were applied to each data set and the irregular pulse detection performances were estimated using area under the receiver operating characteristic curve based on a 10-fold cross-validation. The extreme gradient boosting method showed the superior performance than others and found that the classification accuracy reached 99.7%. The results confirmed that the proposed algorithm could be used for arrhythmia screening. To make a fusion technology integrating western and Korean medicine, arrhythmia subtype classification from the perspective of Korean medicine will be needed for future research.

Computational Analysis of PCA-based Face Recognition Algorithms (PCA기반의 얼굴인식 알고리즘들에 대한 연산방법 분석)

  • Hyeon Joon Moon;Sang Hoon Kim
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.247-258
    • /
    • 2003
  • Principal component analysis (PCA) based algorithms form the basis of numerous algorithms and studies in the face recognition literature. PCA is a statistical technique and its incorporation into a face recognition system requires numerous design decisions. We explicitly take the design decisions by in-troducing a generic modular PCA-algorithm since some of these decision ate not documented in the literature We experiment with different implementations of each module, and evaluate the different im-plementations using the September 1996 FERET evaluation protocol (the do facto standard method for evaluating face recognition algorithms). We experiment with (1) changing the illumination normalization procedure; (2) studying effects on algorithm performance of compressing images using JPEG and wavelet compression algorithms; (3) varying the number of eigenvectors in the representation; and (4) changing the similarity measure in classification process. We perform two experiments. In the first experiment, we report performance results on the standard September 1996 FERET large gallery image sets. The result shows that empirical analysis of preprocessing, feature extraction, and matching performance is extremely important in order to produce optimized performance. In the second experiment, we examine variations in algorithm performance based on 100 randomly generated image sets (galleries) of the same size. The result shows that a reasonable threshold for measuring significant difference in performance for the classifiers is 0.10.

  • PDF

Single Low-Light Ghost-Free Image Enhancement via Deep Retinex Model

  • Liu, Yan;Lv, Bingxue;Wang, Jingwen;Huang, Wei;Qiu, Tiantian;Chen, Yunzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1814-1828
    • /
    • 2021
  • Low-light image enhancement is a key technique to overcome the quality degradation of photos taken under scotopic vision illumination conditions. The degradation includes low brightness, low contrast, and outstanding noise, which would seriously affect the vision of the human eye recognition ability and subsequent image processing. In this paper, we propose an approach based on deep learning and Retinex theory to enhance the low-light image, which includes image decomposition, illumination prediction, image reconstruction, and image optimization. The first three parts can reconstruct the enhanced image that suffers from low-resolution. To reduce the noise of the enhanced image and improve the image quality, a super-resolution algorithm based on the Laplacian pyramid network is introduced to optimize the image. The Laplacian pyramid network can improve the resolution of the enhanced image through multiple feature extraction and deconvolution operations. Furthermore, a combination loss function is explored in the network training stage to improve the efficiency of the algorithm. Extensive experiments and comprehensive evaluations demonstrate the strength of the proposed method, the result is closer to the real-world scene in lightness, color, and details. Besides, experiments also demonstrate that the proposed method with the single low-light image can achieve the same effect as multi-exposure image fusion algorithm and no ghost is introduced.

Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm (점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상)

  • Chang, Jeong-Ho;Lee, Jong-Woo;Eom, Jae-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1045-1055
    • /
    • 2007
  • Latent topic models are statistical models which automatically captures salient patterns or correlation among features underlying a data collection in a probabilistic way. They are gaining an increased popularity as an effective tool in the application of automatic semantic feature extraction from text corpus, multimedia data analysis including image data, and bioinformatics. Among the important issues for the effectiveness in the application of latent topic models to the massive data set is the efficient learning of the model. The paper proposes an accelerated learning technique for PLSA model, one of the popular latent topic models, by an incremental EM algorithm instead of conventional EM algorithm. The incremental EM algorithm can be characterized by the employment of a series of partial E-steps that are performed on the corresponding subsets of the entire data collection, unlike in the conventional EM algorithm where one batch E-step is done for the whole data set. By the replacement of a single batch E-M step with a series of partial E-steps and M-steps, the inference result for the previous data subset can be directly reflected to the next inference process, which can enhance the learning speed for the entire data set. The algorithm is advantageous also in that it is guaranteed to converge to a local maximum solution and can be easily implemented just with slight modification of the existing algorithm based on the conventional EM. We present the basic application of the incremental EM algorithm to the learning of PLSA and empirically evaluate the acceleration performance with several possible data partitioning methods for the practical application. The experimental results on a real-world news data set show that the proposed approach can accomplish a meaningful enhancement of the convergence rate in the learning of latent topic model. Additionally, we present an interesting result which supports a possible synergistic effect of the combination of incremental EM algorithm with parallel computing.

Face Recognition based on Weber Symmetrical Local Graph Structure

  • Yang, Jucheng;Zhang, Lingchao;Wang, Yuan;Zhao, Tingting;Sun, Wenhui;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1748-1759
    • /
    • 2018
  • Weber Local Descriptor (WLD) is a stable and effective feature extraction algorithm, which is based on Weber's Law. It calculates the differential excitation information and direction information, and then integrates them to get the feature information of the image. However, WLD only considers the center pixel and its contrast with its surrounding pixels when calculating the differential excitation information. As a result, the illumination variation is relatively sensitive, and the selection of the neighbor area is rather small. This may make the whole information is divided into small pieces, thus, it is difficult to be recognized. In order to overcome this problem, this paper proposes Weber Symmetrical Local Graph Structure (WSLGS), which constructs the graph structure based on the $5{\times}5$ neighborhood. Then the information obtained is regarded as the differential excitation information. Finally, we demonstrate the effectiveness of our proposed method on the database of ORL, JAFFE and our own built database, high-definition infrared faces. The experimental results show that WSLGS provides higher recognition rate and shorter image processing time compared with traditional algorithms.

Content-based Image Retrieval using LBP and HSV Color Histogram (LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색)

  • Lee, Kwon;Lee, Chulhee
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.372-379
    • /
    • 2013
  • In this paper, we proposed a content-based image retrieval algorithm using local binary patterns and HSV color histogram. Images are retrieved using image input in image retrieval system. Many researches are based on global feature distribution such as color, texture and shape. These techniques decrease the retrieval performance in images which contained background the large amount of image. To overcome this drawback, the proposed method extract background fast and emphasize the feature of object by shrinking the background. The proposed method uses HSV color histogram and Local Binary Patterns. We also extract the Local Binary Patterns in quantized Hue domain. Experimental results show that the proposed method 82% precision using Corel 1000 database.

Extraction of full body size parameters for personalized recommendation module (개인 맞춤형 추천모듈을 위한 전신 신체사이즈 추출)

  • Park, Yong-Hee;Chin, Seong-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5113-5119
    • /
    • 2010
  • Anthropometry has been broadly explored in various fields including automobile industry, home electronic appliances, medical appliances and sports goods with aiming at reaching satisfaction to consumer's need and efficiency. However, current technologies to measure a human body still have barriers in which the methods mostly seem to be contingent on expensive devices such as scanner and digital measuring instruments and to be directly touchable to the body when obtaining body size.. Therefore, in this paper, we present a general method to automatically extract size of body from a real body image acquired from a camera and to utilize it into recommend systems including clothing and bicycle fitting. At first, Haar-like features and AdaBoost algorithm are employed to detect body position. Then features of body can be recognized using AAM. Finally clothing and bicycle recommending modules have been implemented and experimented to validate the proposed method.