Journal of the Korean Institute of Intelligent Systems
/
v.26
no.1
/
pp.56-63
/
2016
In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.
International Journal of Computer Science & Network Security
/
v.23
no.1
/
pp.112-119
/
2023
Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.209-216
/
2018
High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.4
/
pp.403-411
/
2014
In this paper, an algorithm of extracting the features of home appliances and automatically building a database to identify home appliances is designed and presented. For the verification, a software library supporting this algorithm is implemented and added to an power management system server, which was already implemented to support real-time monitoring of home appliances' power consumption status and controlling their power. The implemented system consists of a system server and clients, each of which measures the power consumed by a home appliance plugged in it and transmits the information to the server in real-time over a wireless network. Through experiments, it is verified that it is possible to identify any home appliance connected to a specific client.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.7
/
pp.655-661
/
2017
It is a very important task to extract character regions contained in various input color images, because characters can provide significant information representing the content of an image. In this paper, we propose a new method for extracting character regions from various input images using MCT features and an AdaBoost algorithm. Using geometric features, the method extracts actual character regions by filtering out non-character regions from among candidate regions. Experimental results show that the suggested algorithm accurately extracts character regions from input images. We expect the suggested algorithm will be useful in multimedia and image processing-related applications, such as store signboard detection and car license plate recognition.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.5
/
pp.188-194
/
2014
The feature extraction mechanism of the CASA(Computational Auditory Scene Analysis) system uses time continuity and frequency channel similarity to compose a correlogram of auditory elements. In segmentation, we compose a binary mask by using cross-correlation function, mask 1(speech) has the same periodicity and synchronization. However, when there is delay between autocorrelation signals with the same periodicity, it is determined as a speech, which is considered to be a drawback. In this paper, we proposed an algorithm to improve discrimination of channel similarity using Weighted Cross-correlation in segmentation. We conducted experiments to evaluate the speech segregation performance of the CASA system in background noise(siren, machine, white, car, crowd) environments by changing SNR 5dB and 0dB. In this paper, we compared the proposed algorithm to the conventional algorithm. The performance of the proposed algorithm has been improved as following: improvement of 2.75dB at SNR 5dB and 4.84dB at SNR 0dB for background noise environment.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.4
/
pp.43-49
/
2019
The wired and wireless Internet is a useful window to easily acquire various types of media data. On the other hand, the public can easily get the media data including the object to which the personal information is exposed, which is a social problem. In this paper, we propose a method to robustly detect a target object that has exposed personal information using a learning algorithm and effectively block the detected target object area. In the proposed method, only the target object containing the personal information is detected using a neural network-based learning algorithm. Then, a grid-like mosaic is created and overlapped on the target object area detected in the previous step, thereby effectively blocking the object area containing the personal information. Experimental results show that the proposed algorithm robustly detects the object area in which personal information is exposed and effectively blocks the detected area through mosaic processing. The object blocking method presented in this paper is expected to be useful in many applications related to computer vision.
This paper proposes a moving object extraction method using the contrast map and salient points. In order to make the contrast map, we generate three-feature maps such as luminance map, color map and directional map and extract salient points from an image. By using these features, we can decide the Attention Window(AW) location easily The purpose of the AW is to remove the useless regions in the image such as background as well as to reduce the amount of image processing. To create the exact location and flexible size of the AW, we use motion feature instead of pre-assumptions or heuristic parameters. After determining of the AW, we find the difference of edge to inner area from the AW. Then, we can extract horizontal candidate region and vortical candidate region. After finding both horizontal and vertical candidates, intersection regions through logical AND operation are further processed by morphological operations. The proposed algorithm has been applied to many video sequences which have static background like surveillance type of video sequences. The moving object was quite well segmented with accurate boundaries.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.15-23
/
2017
The person Re-identification is the most challenging part of computer vision due to the significant changes in human pose and background clutter with occlusions. The picture from non-overlapping cameras enhance the difficulty to distinguish some person from the other. To reach a better performance match, most methods use feature selection and distance metrics separately to get discriminative representations and proper distance to describe the similarity between person and kind of ignoring some significant features. This situation has encouraged us to consider a novel method to deal with this problem. In this paper, we proposed an enhanced recurrent neural network with three-tier hierarchical network for person re-identification. Specifically, the proposed recurrent neural network (RNN) model contain an iterative expectation maximum (EM) algorithm and three-tier Hierarchical network to jointly learn both the discriminative features and metrics distance. The iterative EM algorithm can fully use of the feature extraction ability of convolutional neural network (CNN) which is in series before the RNN. By unsupervised learning, the EM framework can change the labels of the patches and train larger datasets. Through the three-tier hierarchical network, the convolutional neural network, recurrent network and pooling layer can jointly be a feature extractor to better train the network. The experimental result shows that comparing with other researchers' approaches in this field, this method also can get a competitive accuracy. The influence of different component of this method will be analyzed and evaluated in the future research.
Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.