• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.028 seconds

AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera (모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.471-479
    • /
    • 2018
  • Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.

Eye Location Algorithm For Natural Video-Conferencing (화상 회의 인터페이스를 위한 눈 위치 검출)

  • Lee, Jae-Jun;Choi, Jung-Il;Lee, Phill-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3211-3218
    • /
    • 1997
  • This paper addresses an eye location algorithm which is essential process of human face tracking system for natural video-conferencing. In current video-conferencing systems, user's facial movements are restricted by fixed camera, therefore it is inconvenient to users. We Propose an eye location algorithm for automatic face tracking. Because, locations of other facial features guessed from locations of eye and scale of face in the image can be calculated using inter-ocular distance. Most previous feature extraction methods for face recognition system are approached under assumption that approximative face region or location of each facial feature is known. The proposed algorithm in this paper uses no prior information on the given image. It is not sensitive to backgrounds and lighting conditions. The proposed algorithm uses the valley representation as major information to locate eyes. The experiments have been performed for 213 frames of 17 people and show very encouraging results.

  • PDF

Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques (서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류)

  • Nguyen, Ngoc;Kang, Myeong-Su;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.

Implementation of Vision System for the Defect Inspection of Color Polyethylene (칼라 팔레트의 불량 검사를 위한 비전 시스템 구현)

  • 김경민;강종수;박중조;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.587-591
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the color product.(bad pallets) An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE color pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labelling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets. The labelling algorithm permits to separate all of the connected components appearing on the pallets. Labelling the connected regions of a image is a fundamental computation in image analysis and machine vision, with a large number of application. Also, we suggested vision processing program in window environment. Simulations and experimental results demonstrate the performance of the proposal algorithm.

  • PDF

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry

  • Aliyu, Ibrahim;Gana, Kolo Jonathan;Musa, Aibinu Abiodun;Adegboye, Mutiu Adesina;Lim, Chang Gyoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4866-4888
    • /
    • 2020
  • One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.

Algorithm for Extract Region of Interest Using Fast Binary Image Processing (고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.634-640
    • /
    • 2018
  • In this paper, we propose an automatic extraction algorithm of region of interest(ROI) based on medical x-ray images. The proposed algorithm uses segmentation, feature extraction, and reference image matching to detect lesion sites in the input image. The extracted region is searched for matching lesion images in the reference DB, and the matched results are automatically extracted using the Kalman filter based fitness feedback. The proposed algorithm is extracts the contour of the left hand image for extract growth plate based on the left x-ray input image. It creates a candidate region using multi scale Hessian-matrix based sessionization. As a result, the proposed algorithm was able to split rapidly in 0.02 seconds during the ROI segmentation phase, also when extracting ROI based on segmented image 0.53, the reinforcement phase was able to perform very accurate image segmentation in 0.49 seconds.

A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component (평균이동분할과 연결요소를 이용한 도로추출 알고리즘)

  • Lee, Tae-Hee;Hwang, Bo-Hyun;Yun, Jong-Ho;Park, Byoung-Soo;Choi, Myung-Ryul
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.359-364
    • /
    • 2014
  • In this paper, we propose a method for extracting a road area by using the mean-shift method and connected-component method. Mean-shift method is very effective to divide the color image by the method of non-parametric statistics to find the center mode. Generally, the feature points of road are extracted by using the information located in the middle and bottom of the road image. And it is possible to extract a road region by using this feature-point and the partitioned color image. However, if a road region is extracted with only the color information and the position information of a road image, it is possible to detect not only noise but also off-road regions. This paper proposes the method to determine the road region by eliminating the noise with the closing / opening operation of the morphology, and by extracting only the portion of the largest area using a connected-components method. The proposed method is simulated and verified by applying the captured road images.

Insect Footprint Recognition using Trace Transform and a Fuzzy Method (Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1615-1623
    • /
    • 2008
  • This paper proposes methods to classify scanned insect footprints. We propose improved SOM and ART2 algorithms for extracting segments, basic areas for feature extraction, and utilize Trace transform and fuzzy weighted mean methods for extracting feature values for classification of the footprints. In the proposed method, regions are extracted by a morphological method in the beginning, and then improved SOM and ART2 algorithms are utilized to extract segments regardless of kinds of insects. Next, A Trace transform method is used to find feature values suitable for various kinds of deformation of insect footprints. In the Trace transform method, Triple features from reconstructed combination of diverse functions, are used to classify the footprints. In general, it is very difficult to decide automatically whether the extracted footprint segment is meaningful for classification or not. So we use a fuzzy weighted mean method for not excluding uncertain footprint segments because the uncertain footprint segments may be possible candidates for classification. We present experimental results of footprint segment extraction and segment classification by the proposed methods.

  • PDF

Robust iris recognition for local noise based on wavelet transforms (국부잡음에 강인한 웨이블릿 기반의 홍채 인식 기법)

  • Park Jonggeun;Lee Chulhee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.121-130
    • /
    • 2005
  • In this paper, we propose a feature extraction method for iris recognition using wavelet transforms. The wavelet transform is fast and has a good localization characteristic. In particular, the low frequency band can be used as an effective feature vector. In iris recognition, the noise caused by eyelid the eyebrow, glint, etc may be included in iris. The iris pattern is distorted by noises by itself, and a feature extraction algorithm based on filter such as Wavelets, Gabor transform spreads noises into whole iris region. Namely, such noises degrade the performance of iris recognition systems a major problem. This kind of noise has adverse effect on performance. In order to solve these problems, we propose to divide the iris image into a number of sub-region and apply the wavelet transform to each sub-region. Experimental results show that the performance of proposed method is comparable to existing methods using Gabor transform and region division noticeably improves recognition performance. However, it is noted that the processing time of the wavelet transform is much faster than that of the existing methods.