• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.028 seconds

The Content-Based Image Retrieval by using Color Histogram and Shape-Based Feature Extraction (컬러 히스토그램과 형상 기반 특징 추출을 이용한 내용 기반 영상 검색)

  • Kang, Hyun-Inn;Ju, Yong-Wan;Baek, Kwang-Ryul
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.113-122
    • /
    • 1999
  • When we want to retrieve the most similar image from the image database, the color histogram intersection, shape feature and texture feature comparing method are used as a metric to measure the similarity. In order to increase the accuracy of retrievals, we need to integrate two different features. In this paper, the histogram intersection and shape based block histogram intersection method are used. This method results in a high efficient algorithm that meets a similar accuracy and a relatively fast retrieval speed compared to the method of integration of two different features. The Proposed algorithm is tested on retrievals of image database consisting of various 600 images and we implemented that the proposed algorithm gives fast, high efficiency and reliability compared to others.

  • PDF

A Supervised Feature Selection Method for Malicious Intrusions Detection in IoT Based on Genetic Algorithm

  • Saman Iftikhar;Daniah Al-Madani;Saima Abdullah;Ammar Saeed;Kiran Fatima
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • Machine learning methods diversely applied to the Internet of Things (IoT) field have been successful due to the enhancement of computer processing power. They offer an effective way of detecting malicious intrusions in IoT because of their high-level feature extraction capabilities. In this paper, we proposed a novel feature selection method for malicious intrusion detection in IoT by using an evolutionary technique - Genetic Algorithm (GA) and Machine Learning (ML) algorithms. The proposed model is performing the classification of BoT-IoT dataset to evaluate its quality through the training and testing with classifiers. The data is reduced and several preprocessing steps are applied such as: unnecessary information removal, null value checking, label encoding, standard scaling and data balancing. GA has applied over the preprocessed data, to select the most relevant features and maintain model optimization. The selected features from GA are given to ML classifiers such as Logistic Regression (LR) and Support Vector Machine (SVM) and the results are evaluated using performance evaluation measures including recall, precision and f1-score. Two sets of experiments are conducted, and it is concluded that hyperparameter tuning has a significant consequence on the performance of both ML classifiers. Overall, SVM still remained the best model in both cases and overall results increased.

Container Image Recognition using Fuzzy-based Noise Removal Method and ART2-based Self-Organizing Supervised Learning Algorithm (퍼지 기반 잡음 제거 방법과 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Kim, Kwang-Baek;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1380-1386
    • /
    • 2007
  • This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is blacker white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm. Experiments using real images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.

Iris Feature Extraction using Independent Component Analysis (독립 성분 분석 방법을 이용한 홍채 특징 추출)

  • 노승인;배광혁;박강령;김재희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.20-30
    • /
    • 2003
  • In a conventional method based on quadrature 2D Gator wavelets to extract iris features, the iris recognition is performed by a 256-byte iris code, which is computed by applying the Gabor wavelets to a given area of the iris. However, there is a code redundancy because the iris code is generated by basis functions without considering the characteristics of the iris texture. Therefore, the size of the iris code is increased unnecessarily. In this paper, we propose a new feature extraction algorithm based on the ICA (Independent Component Analysis) for a compact iris code. We implemented the ICA to generate optimal basis functions which could represent iris signals efficiently. In practice the coefficients of the ICA expansions are used as feature vectors. Then iris feature vectors are encoded into the iris code for storing and comparing an individual's iris patterns. Additionally, we introduce two methods to enhance the recognition performance of the ICA. The first is to reorganize the ICA bases and the second is to use a different ICA bases set. Experimental results show that our proposed method has a similar EER (Equal Error Rate) as a conventional method based on the Gator wavelets, and the iris code size of our proposed methods is four times smaller than that of the Gabor wavelets.

Comparative Study of GDPA and Hough Transformation for Linear Feature Extraction using Space-borne Imagery (위성 영상정보를 이용한 선형 지형지물 추출에서의 GDPA와 Hough 변환 처리결과 비교연구)

  • Lee Kiwon;Ryu Hee-Young;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.261-274
    • /
    • 2004
  • The feature extraction using remotely sensed imagery has been recognized one of the important tasks in remote sensing applications. As the high-resolution imagery are widely used to the engineering purposes, need of more accurate feature information also is increasing. Especially, in case of the automatic extraction of linear feature such as road using mid or low-resolution imagery, several techniques was developed and applied in the mean time. But quantitatively comparative analysis of techniques and case studies for high-resolution imagery is rare. In this study, we implemented a computer program to perform and compare GDPA (Gradient Direction Profile Analysis) algorithm and Hough transformation. Also the results of applying two techniques to some images were compared with road centerline layers and boundary layers of digital map and presented. For quantitative comparison, the ranking method using commission error and omission error was used. As results, Hough transform had high accuracy over 20% on the average. As for execution speed, GDPA shows main advantage over Hough transform. But the accuracy was not remarkable difference between GDPA and Hough transform, when the noise removal was app]ied to the result of GDPA. In conclusion, it is expected that GDPA have more advantage than Hough transform in the application side.

Feature extraction motivated by human information processing method and application to handwritter character recognition (인간의 정보처리 방법에 기반한 특징추출 및 필기체 문자인식에의 응용)

  • 윤성수;변혜란;이일병
    • Korean Journal of Cognitive Science
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • In this paper, the features which are thought to be used by humans based on the psychological experiment of human information processing are applied to character recognition problem. Man will deal with a little large area information as well as pixel by pixel information. Therefore we define the feature that represents a little wide region I information called region feature, and combine the features derived from region feature and pixel by pixel features that have been used by now. The features we used are the result of region feature based preanalysis, mesh with region attributes, cross distance difference and gradient. The training and test data in the experiment are handwritten Korean alphabets, digits and English alphabets, which are trained on neural network using back propagation algorithm and recognition results are 90.27-93.25%, 98.00% and 79.73-85.75%, respectively Experimental results show that the feature we are suggesting in this paper is 1-2% better than UDLRH feature similar in attribute to region feature, and the tendency of misrecognition is more easily acceptable by humans.

  • PDF

The High-Reliable Image Authentication Technique using Histogram Compensation (히스토그램 보정을 이용한 고신뢰성 영상 인증 기법)

  • Kim, Hyo-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1088-1094
    • /
    • 2010
  • Image authentication algorithms have to discriminate forged contents in the various critical fields of military, medical services, digital documents. They must ensure perceptual invisibility and fragility against malicious attacks. It is desirable that watermarking algorithms support sufficient insertion capacity and blind feature. And, high reliable algorithms that can eliminate false-positive and false-negative errors are needed in the watermark extraction process. In this paper, we control coefficients of high frequency band in a DCT domain and compensate brightness histogram for high reliability. As a result, we found that the proposed algorithm guarantee various requirements such as perceptual invisibility with high PSNR values, fragility, high reliability and blind feature. In addition, experiment results show that the proposed algorithm can be used steganographic applications by sufficient capacity of watermark.

An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition (차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법)

  • Jo, Jae-Ho;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram (표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘)

  • Jeong, E.C.;Kim, S.J.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, Artificial Neural Network(ANN) based motion classification algorithm is proposed to classify wrist motions using surface electromyograms(sEMG). surface EMGs are obtained from two electrodes placed on the flexor carpi ulnaris muscle and extensor carpi ulnaris muscle of 26 subjects under no strain condition during wrist motions and used to recognize wrist motions such as up, down, left, right, and rest. Feature is extracted from obtained EMG signals in time domain for fast processing and used to classify wrist motions using ANN. DAMV, DASDV, MAV, and RMS were used as features and accuracies of motion classification based on ANN were 98.03% for DAMV, 97.97% for DASDV, 96.95% for MAV, 96.82% for RMS.

  • PDF

Activity Object Detection Based on Improved Faster R-CNN

  • Zhang, Ning;Feng, Yiran;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.416-422
    • /
    • 2021
  • Due to the large differences in human activity within classes, the large similarity between classes, and the problems of visual angle and occlusion, it is difficult to extract features manually, and the detection rate of human behavior is low. In order to better solve these problems, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multi-object recognition and localization through a second-order detection network, and replaces the original feature extraction module with Dense-Net, which can fuse multi-level feature information, increase network depth and avoid disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects, and enhancing the network detection accuracy under multiple objects. During the experiment, the improved Faster R-CNN method in this article has 84.7% target detection result, which is improved compared to other methods, which proves that the target recognition method has significant advantages and potential.