• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.029 seconds

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.

Signal Synthesis and Feature Extraction for Active Sonar Target Classification (능동소나 표적 인식을 위한 신호합성 및 특징추출)

  • Uh, Y.;Seok, J.W.
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • Various approaches to process active sonar signals are under study, but there are many problems to be considered. The sonar signals are distorted by the underwater environment, and the spatio-temporal and spectral characteristics of active sonar signals change in accordance with the aspect of the target even though they come from the same one. And it has difficulties in collecting actual underwater data. In this paper, we synthesized active target echoes based on ray tracing algorithm using target model having 3-dimensional highlight distribution. Then, Fractional Fourier transform was applied to synthesized target echoes to extract feature vector. Recognition experiment was performed using probabilistic neural network classifier.

Walking Features Detection for Human Recognition

  • Viet, Nguyen Anh;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.787-795
    • /
    • 2008
  • Human recognition on camera is an interesting topic in computer vision. While fingerprint and face recognition have been become common, gait is considered as a new biometric feature for distance recognition. In this paper, we propose a gait recognition algorithm based on the knee angle, 2 feet distance, walking velocity and head direction of a person who appear in camera view on one gait cycle. The background subtraction method firstly use for binary moving object extraction and then base on it we continue detect the leg region, head region and get gait features (leg angle, leg swing amplitude). Another feature, walking speed, also can be detected after a gait cycle finished. And then, we compute the errors between calculated features and stored features for recognition. This method gives good results when we performed testing using indoor and outdoor landscape in both lateral, oblique view.

  • PDF

Recognition of hand written hangeul based on the stroke order of the elementary segment

  • Song, Jeong-Young;Akizuki, Kageo;Lee, Hee-Hyol;Choi, Won-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.302-306
    • /
    • 1994
  • This paper describes how to recognize hand written Hangeul character using the stroke order of the elementary segment. The recognition system is constructed of parts : character input part, segment disassembling part, character element extraction part and character recognition part. The character input part reads the character and performs thinning algorithm. In the segment disassembling part, the input character is disassembled into elementary segments using the direction codes and the feature parameters. In the character element extraction part, we extract the character element using the stroke order and the knowledge rule. Finally, we able to recognize the hand written Hangeul characters by assembling the character elements, in the character recognition part.

  • PDF

An approach to visual pattern recognition by neural network system

  • Hatakeyama, Yasuhiro;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.61-64
    • /
    • 1992
  • In this paper, a visual pattern recognition system is proposed, which can recognize both a pattern and its location. This system, referred to as the expanded neocognitron, has the following capabilities: (1) A higher performance in extraction of features, and (2) A new capability for recognizing the locations of patterns. This system adopts the learning and recognizing mechanism of the neocognitron. First, the ability to classify pattern is enhanced by improving the mechanisms of feature extraction and learning algorithm. Second, the function of detecting the location of each pattern is realized by developing an architecture which does not reduce structure, i.e., the unit density is constant all the way from the input stage to the output stage.

  • PDF

An Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model

  • Yoon, Seok-Hwan;Min, Joonyoung
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.621-632
    • /
    • 2013
  • The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the earliest time possible in a forest. GMMs are usually addressed by making the model adaptive so that its parameters can track changing illuminations and by making the model more complex so that it can represent multimodal backgrounds more accurately for smoke plume segmentation in the forest. Also, in this paper, we suggest a way to classify the smoke plumes via a feature extraction using HSL(Hue, Saturation and Lightness or Luminanace) color space analysis.

Robust Stroke Extraction Method for Handwritten Korean Characters

  • Park, Young-Kyoo;Rhee, Sang-Burm
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.819-822
    • /
    • 2000
  • The merit of the stroke extraction algorithm is the ease of the feature abstraction from the skeleton of a character, But, extracting strokes from Korean characters has two major problems that must be dealt with. One is extracting primitive strokes and the other is merging or splitting the strokes using dynamic information of the strokes. In this paper, a method is proposed to extract strokes from an off-line handwritten Korean character. We have developed some stroke segmentation rules based on splitting, merging and directional analysis. Using these techniques, we can extract and trace the strokes in an off-line handwritten Korean character accurately and efficiently.

  • PDF

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

Performance Improvement of Radial Basis Function Neural Networks Using Adaptive Feature Extraction (적응적 특징추출을 이용한 Radial Basis Function 신경망의 성능개선)

  • 조용현
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.253-262
    • /
    • 2000
  • This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.

  • PDF

Feature Extraction of Radar Signals Using Streaming Process (스트리밍 처리에 의한 레이더 신호 특성 추출)

  • Kim, Gwan-Tae;Ju, Young-Kwan;Jeon, Joongnam
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.31-38
    • /
    • 2020
  • Radar signal identification of electronic warfare is a technology that recognizes the pulse repetition interval (PRI) from a set of pulse description words (PDWs) generated by the signal receiver. Conventionally batch processing is widely used in which a number of PDWs are collected as a unit and identifies PRI from the batch. In this paper, we propose a feature extraction algorithm based on the streaming process. This technique does not wait to form a batch. Whenever a PDW(Pulse Description Word) is generated from the signal receiver, the streaming process tries to form a cluster of PDWs, and makes the DTOA (Difference of Time of Arrival) histogram, finds out the frame PRI based on the concentration ratio, and decides the number of stagger stages. Experiments proved that the proposed algorithm derives stable recognition results as the cluster size increases.