• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.026 seconds

Implementation of Advanced Dynamic Signature Verification System (고성능 동적 서명인증시스템 구현)

  • Kim Jin-whan;Cho Hyuk-gyu;Cha Eui-young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.890-895
    • /
    • 2005
  • Dynamic (On-line) signature verification system consists of preprocessing, feature extraction, comparison and decision process for internal processing, and registration and verification windows for the user interface. We describe an implementation and design for an advanced dynamic signature verification system. Also, we suggest the method of feature extraction, matching algorithm, efficient user interface and an objective criteria for evaluating the performance.

A Matlab and Simulink Based Three-Phase Inverter Fault Diagnosis Method Using Three-Dimensional Features

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • Fault detection and diagnosis is a task to monitor the occurrence of faults and pinpoint the exact location of faults in the system. Fault detection and diagnosis is gaining importance in development of efficient, advanced and safe industrial systems. Three phase inverter is one of the most common and excessively used power electronic system in industries. A fault diagnosis system is essential for safe and efficient usage of these inverters. This paper presents a fault detection technique and fault classification algorithm. A new feature extraction approach is proposed by using three-phase load current in three-dimensional space and neural network is used to diagnose the fault. Neural network is responsible of pinpointing the fault location. Proposed method and experiment results are presented in detail.

Medical Image Retrieval Using Feature Extraction Based on Wavelet Transform (웨이블렛 변환 기반의 특징 검출을 이용한 의료영상 검색)

  • Lee, H.S.;Ma, K.Y.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.321-322
    • /
    • 1998
  • In this paper, a medical images retrieval method using feature extraction based on wavelet transform is proposed. We used energy of coefficients which is represented by wavelet transform. The proposed retrieval algorithm is comprised of the two retrieval. At first, we make a energy map for wavelet coefficient of a query image and then compare is to one of db image. And then we use an edge information of the query image to retrieve the images selected at the first retrieval once more. Consequently some retrieved images are displayed on screen.

  • PDF

Condition Monitoring in Multilayer Stacking Processes (적층 공정에서의 상태 기반 모니터링)

  • Min, Hyungcheol;Lee, Younggon;Jeong, Haedong;Park, Seungtae;Lee, Seungchul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.739-742
    • /
    • 2014
  • In the process of MLCC manufacturing, MLCC stacking process is the key process of making high quality MLCC. Since MLCC is small components, the entire process of MLCC stacking process is minute and sensitive to micro errors. To prevent micro error, we suggest condition-based monitoring which quantifies error based on feature extraction and quantifying error method. As results, it has been shown that the suggested algorithm has effectiveness of condition based monitoring of MLCC stacker.

  • PDF

A Study on the Feature Extraction of Roads Using Morphological Operators (수리 형태론적 연산자를 이용한 도로정보의 특징추출에 관한 연구)

  • 손진우;홍기원;심성룡;김선일;최태영;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1496-1505
    • /
    • 1995
  • Maps are one of the most complicated types of drawings. Drawing recognition technology is not yet sophisticated enough for automated map reading. To automatically extract a road map dircetly from complicated topographical maps, a very sophisticated algorithm is needed, since the image generally involvfes such complicated patterns as symbols, characters, residential sections, rivers, railroads, etc. This paper proposes a new feature extraction method based on the morphology. We apply this method to extract complete set of road segments from topographical maps. The proposed method successfully extract road segments from various areas.

  • PDF

Collaborative Filtering and Genre Classification for Music Recommendation

  • Byun, Jeong-Yong;Nasridinov, Aziz
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.693-694
    • /
    • 2014
  • This short paper briefly describes the proposed music recommendation method that provides suitable music pieces to a listener depending on both listeners' ratings and content of music pieces. The proposed method consists of two methods. First, listeners' ratings prediction method is a combination the traditional user-based and item-based collaborative filtering methods. Second, genre classification method is a combination of feature extraction and classification procedures. The feature extraction step obtains audio signal information and stores it in data structure, while the second one classifies the music pieces into various genres using decision tree algorithm.

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

A Study of Facial Organs Classification System Based on Fusion of CNN Features and Haar-CNN Features

  • Hao, Biao;Lim, Hye-Youn;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.105-113
    • /
    • 2018
  • In this paper, we proposed a method for effective classification of eye, nose, and mouth of human face. Most recent image classification uses Convolutional Neural Network(CNN). However, the features extracted by CNN are not sufficient and the classification effect is not too high. We proposed a new algorithm to improve the classification effect. The proposed method can be roughly divided into three parts. First, the Haar feature extraction algorithm is used to construct the eye, nose, and mouth dataset of face. The second, the model extracts CNN features of image using AlexNet. Finally, Haar-CNN features are extracted by performing convolution after Haar feature extraction. After that, CNN features and Haar-CNN features are fused and classify images using softmax. Recognition rate using mixed features could be increased about 4% than CNN feature. Experiments have demonstrated the performance of the proposed algorithm.

A Feature-based Vehicle Tracking System using Trajectory Matching (궤적 정합을 이용한 특징 기반의 차량 추적 시스템)

  • Jeong, Yeong-Gi;Jo, Tae-Hun;Ho, Yo-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.648-656
    • /
    • 2001
  • In this paper, we propose a new feature-based vehicle tracking system using trajectory matching for intelligent traffic surveillance. The proposed system consists of three parts: feature extraction, feature tracking, and feature grouping using trajectory matching. For feature extraction and feature tracking, features of vehicles are selected based on the measure of cornerness and are tracked using linear Kalman filtering. We then group features from the same vehicle in the grouping step. We suggest a new grouping algorithm using the spatial information of features and trajectory matching to solve the over-grouping Problems of the feature-based tracking method. Finally, our proposed tracking system demonstrates good performance for typical traffic scenes with partial occlusion and neighboring conditions.

  • PDF

A Hardware Implementation of Pyramidal KLT Feature Tracker (계층적 KLT 특징 추적기의 하드웨어 구현)

  • Kim, Hyun-Jin;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • This paper presents the hardware implementation of the pyramidal KLT(Kanade-Lucas-Tomasi) feature tracker. Because of its high computational complexity, it is not easy to implement a real-time KLT feature tracker using general-purpose processors. A hardware implementation of the pyramidal KLT feature tracker using FPGA(Field Programmable Gate Array) is described in this paper with emphasis on 1) adaptive adjustment of threshold in feature extraction under diverse lighting conditions, and 2) modification of the tracking algorithm to accomodate parallel processing and to overcome memory constraints such as capacity and bandwidth limitation. The effectiveness of the implementation was evaluated over ones produced by its software implementation. The throughput of the FPGA-based tracker was 30 frames/sec for video images with size of $720{\times}480$.