• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.039 seconds

SoC Implementation of Fingerprint Feature Extraction System with Ridge Following (융선추적을 이용한 지문 특징점 추출기의 SoC 구현)

  • 김기철;박덕수;정용화;반성범
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.97-107
    • /
    • 2004
  • This paper presents an System-on-Chip(SoC) implementation of fingerprint feature extraction system. Typical fingerprint feature extraction systems employ binarization and thinning processes which cause many extraction errors for low qualify fingerprint images and degrade the accuracy of the entire fingerprint recognition system. To solve these problems, an algorithm directly following ridgelines without the binarization and thinning process has been proposed. However, the computational requirement of the algorithm makes it hard to implement it on SoCs by using software only. This paper presents an implementation of the ridge-following algorithm onto SoCs. The algorithm has been modified to increase the efficiency of hardwares. Each function block of the algorithm has been implemented in hardware or in software by considering its computational complexity, cost and utilization of the hardware, and efficiency of the entire system. The fingerprint feature extraction system has been developed as an IP for SoCs, hence it can be used on many kinds of SoCs for smart cards.

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

An efficient learning algorithm of nonlinear PCA neural networks using momentum (모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF

Reconstruction of Head Surface based on Cross Sectional Contours (단면 윤곽선을 기반으로 한 두부표변의 재구성)

  • 한영환;성현경;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.365-373
    • /
    • 1997
  • In this paper, a new method of the 3D(dimensional) image reconstruction is proposed to build up the 3D image from 2D images using digital image processing techniques and computer graphics. First, the new feature extraction algorithm that doesn't need various input parameters and is not affected by threshold is adopted This new algorithm extracts feature points by eliminating some undesirable points on the ground of the connectivity. Second, as the cast function to reconstruct surfaces using extracted feature points, the minimum distance measure between two plane images has been adopted According to this measure, the surface formation algorithm doesn't need complex calculation and takes the form of triangle or trapezoid To investigate usefulness, this approach has been applied to a head CT image and compared with other methods. Experimental comparisons show that the suggested algorithm yields better performance on feature extraction than others. In contrast with the other methods, the complex calculation for surface formation in the proposed algorithm is not necessary.

  • PDF

Feature Extraction Method based on Bhattacharyya Distance for Multiclass Problems (Bhattacharyya Distance에 기반한 다중클래스 문제에 대한 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.643-646
    • /
    • 1999
  • In this paper, we propose a feature extraction method based on Bhattacharyya distance for multiclass problems. The Bhattacharyya distance provides a valuable information in determining the effectiveness of a feature set and has been used as separability measure for feature selection. Recently, a feature extraction algorithm hat been proposed for two normally distributed classes based on Bhattacharyya distance. In this paper, we propose to expand the previous approach to multiclass cases. Experiment results show that the proposed method compares favorably with the conventional methods.

  • PDF

Pre-processing Algorithm for Detection of Slab Information on Steel Process using Robust Feature Points extraction (강건한 특징점 추출을 이용한 철강제품 정보 검출을 위한 전처리 알고리즘)

  • Choi, Jong-Hyun;Yun, Jong-Pil;Choi, Sung-Hoo;Koo, Keun-Hwi;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1819-1820
    • /
    • 2008
  • Steel slabs are marked with slab management numbers (SMNs). To increase efficiency, automated identification of SMNs from digital images is desirable. Automatic extraction of SMNs is a prerequisite for automatic character segmentation and recognition. The images include complex background, and the position of the text region of the slabs is variable. This paper describes an pre-processing algorithm for detection of slab information using robust feature points extraction. Using SIFT(Scale Invariant Feature Transform) algorithm, we can reduce the search region for extraction of SMNs from the slab image.

  • PDF

The Important Frequency Band Selection and Feature Vecotor Extraction System by an Evolutional Method

  • Yazama, Yuuki;Mitsukura, Yasue;Fukumi, Minoru;Akamatsu, Norio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2209-2212
    • /
    • 2003
  • In this paper, we propose the method to extract the important frequency bands from the EMG signal, and for generation of feature vector using the important frequency bands. The EMG signal is measured with 4 sensor and is recorded as 4 channel’s time series data. The same frequency bands from 4 channel’s frequency components are selected as the important frequency bands. The feature vector is calculated by the function formed using the combination of selected same important frequency bands. The EMG signals acquired from seven wrist motion type are recognized by changing into the feature vector formed. Then, the extraction and generation is performed by using the double combination of the genetic algorithm (GA) and the neural network (NN). Finally, in order to illustrate the effectiveness of the proposed method, computer simulations are done.

  • PDF

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements (근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘)

  • Kim, Seo-Jun;Jeong, Eui-Chul;Lee, Sang-Min;Song, Young-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.