• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.029 seconds

Classification of TV Program Scenes Based on Audio Information

  • Lee, Kang-Kyu;Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.91-97
    • /
    • 2004
  • In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.

Realtime Face Recognition by Analysis of Feature Information (특징정보 분석을 통한 실시간 얼굴인식)

  • Chung, Jae-Mo;Bae, Hyun;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.822-826
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of 10 persons show that the proposed method yields high recognition rates.

  • PDF

Separations and Feature Extractions for Image Signals Using Independent Component Analysis Based on Neural Networks of Efficient Learning Rule (효율적인 학습규칙의 신경망 기반 독립성분분석을 이용한 영상신호의 분리 및 특징추출)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.200-208
    • /
    • 2003
  • This paper proposes a separation and feature extraction of image signals using the independent component analysis(ICA) based on neural networks of efficient learning rule. The proposed learning rule is a hybrid fixed-point(FP) algorithm based on secant method and momentum. Secant method is applied to improve the performance by simplifying the 1st-order derivative computation for optimizing the objective function, which is to minimize the mutual informations of the independent components. The momentum is applied for high-speed convergence by restraining the oscillation in the process of converging to the optimal solution. The proposed algorithm has been applied to the composite images generated by random mixing matrix from the 10 images of $512\times512$-pixel. The simulation results show that the proposed algorithm has better performances of the separation speed and rate than those using the FP algorithm based on Newton and secant method. The proposed algorithm has been also applied to extract the features using a 3 set of 10,000 image patches from the 10 fingerprints of $256\times256$-pixel and the front and the rear paper money of $480\times225$-pixel, respectively, The simulation results show that the proposed algorithm has also better extraction speed than those using the another methods. Especially, the 160 basis vectors(features) of $16\times16$-pixel show the local features which have the characteristics of spatial frequency and oriented edges in the images.

A Study on Segmentation of Uterine Cervical Pap-Smears Images Using Neural Networks (신경 회로망을 이용한 자궁 경부 세포진 영상의 영역 분할에 관한 연구)

  • 김선아;김백섭
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.231-239
    • /
    • 2001
  • This paper proposes a region segmenting method for the Pap-smear image. The proposed method uses a pixel classifier based on neural network, which consists of four stages : preprocessing, feature extraction, region segmentation and postprocessing. In the preprocessing stage, brightness value is normalized by histogram stretching. In the feature extraction stage, total 36 features are extracted from $3{\times}3$ or $5{\times}5$ window. In the region segmentation stage, each pixel which is associated with 36 features, is classified into 3 groups : nucleus, cytoplasm and background. The backpropagation network is used for classification. In the postprocessing stage, the pixel, which have been rejected by the above classifier, are re-classified by the relaxation algorithm. It has been shown experimentally that the proposed method finds the nucleus region accurately and it can find the cytoplasm region too.

  • PDF

Enhanced Independent Component Analysis of Temporal Human Expressions Using Hidden Markov model

  • Lee, J.J.;Uddin, Zia;Kim, T.S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.487-492
    • /
    • 2008
  • Facial expression recognition is an intensive research area for designing Human Computer Interfaces. In this work, we present a new facial expression recognition system utilizing Enhanced Independent Component Analysis (EICA) for feature extraction and discrete Hidden Markov Model (HMM) for recognition. Our proposed approach for the first time deals with sequential images of emotion-specific facial data analyzed with EICA and recognized with HMM. Performance of our proposed system has been compared to the conventional approaches where Principal and Independent Component Analysis are utilized for feature extraction. Our preliminary results show that our proposed algorithm produces improved recognition rates in comparison to previous works.

  • PDF

Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines (SVMs 을 이용한 유도전동기 지능 결항 진단)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

Matched Field Processing: Ocean Experimental Data Analysis Using Feature Extraction Method (실 해상 실험 데이터를 이용한 정합장 처리에서의 특성치 추출 기법 분석)

  • Kim Kyung Seop;Seong Woo Jae;Song Hee Chun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1E
    • /
    • pp.21-27
    • /
    • 2005
  • Environmental mismatch has been one of important issues discussed in matched field processing for underwater source detection problem. To overcome this mismatch many algorithms professing robustness have been suggested. Feature extraction method (FEM) [Seong and Byun, IEEE Journal of Oceanic Engineering, 27(3), 642-652 (2002)] is one of robust matched field processing algorithms, which is based on the eigenvector estimation. Excluding eigenvectors of replica covariance matrix corresponding to large eigenvalues and forming an incoherent subspace of the replica field, the processor is formulated similarly to MUSIC algorithm. In this paper, by using the ocean experimental data, processing results of FEM and MVDR with white noise constraint (WNC) are presented for two levels of multi-tone source. Analysis of eigen-space of CSDM and FEM performance are also presented.

A Study on the Feature Extraction of Maps using Mechanism of Optical Neural Field (시각정보처리 개념을 이용한 지형도의 특징추출에 관한 연구)

  • 손진우;김욱현;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.154-160
    • /
    • 1995
  • Maps are one of the most complicated types of drawings. Drawing recognition technology is not yet sophisticated enough for automated map reading. To automatically extract a road map directly form more complicated topographical maps, a very complicated algorithm is needed, simce the image generally involves such complicated patterns as symbols, characters, residential sections, rivers,etc. This paper describes a new feature extraction method based on the human optical neural field. We apply this method to extract complete set of road segments from topographical maps. The proposed method successfully extract road segments from various areas.

  • PDF

Automatic Image Registration Based on Extraction of Corresponding-Points for Multi-Sensor Image Fusion (다중센서 영상융합을 위한 대응점 추출에 기반한 자동 영상정합 기법)

  • Choi, Won-Chul;Jung, Jik-Han;Park, Dong-Jo;Choi, Byung-In;Choi, Sung-Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.524-531
    • /
    • 2009
  • In this paper, we propose an automatic image registration method for multi-sensor image fusion such as visible and infrared images. The registration is achieved by finding corresponding feature points in both input images. In general, the global statistical correlation is not guaranteed between multi-sensor images, which bring out difficulties on the image registration for multi-sensor images. To cope with this problem, mutual information is adopted to measure correspondence of features and to select faithful points. An update algorithm for projective transform is also proposed. Experimental results show that the proposed method provides robust and accurate registration results.

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF