• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.031 seconds

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.

Clustering Effects in Sparse NMF(Non-negative Matrix Factorization) (Sparse NMF에 의한 클러스터링)

  • Oh, Sang-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.92-95
    • /
    • 2008
  • NMF(Non-negative Matrix Factorization) has been proposed as an useful algorithm for feature extraction. Using NMF, we can extract low-dimensional feature vectors. Also, we can find clustering effects in the NMF algorithm. Also, it is reported that the sparse NMF algorithm shows better clustering effects. This paper compares the two approaches in the viewpoint of clustering effects.

  • PDF

Research on Shellfish Recognition Based on Improved Faster RCNN

  • Feng, Yiran;Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.695-700
    • /
    • 2021
  • The Faster RCNN-based shellfish recognition algorithm is introduced for shellfish recognition studies that currently do not have any deep learning-based algorithms in a practical setting. The original feature extraction module is replaced by DenseNet, which fuses multi-level feature data and optimises the NMS algorithm, network depth and merging method; overcoming the omission of shellfish overlap, multiple shellfish and insufficient light, effectively solving the problem of low shellfish classification accuracy. In the complexifier test environment, the test accuracy was improved by nearly 4%. Higher testing accuracy was achieved compared to the original testing algorithm. This provides favourable technical support for future applications of the improved Faster RCNN approach to seafood quality classification.

Efficient Image Search using Advanced SURF and DCD on Mobile Platform (모바일 플랫폼에서 개선된 SURF와 DCD를 이용한 효율적인 영상 검색)

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.53-59
    • /
    • 2015
  • Since the amount of digital image continues to grow in usage, users feel increased difficulty in finding specific images from the image collection. This paper proposes a novel image searching scheme that extracts the image feature using combination of Advanced SURF (Speed-Up Robust Feature) and DCD (Dominant Color Descriptor). The key point of this research is to provide a new feature extraction algorithm to improve the existing SURF method with removal of unnecessary feature in image retrieval, which can be adaptable to mobile system and efficiently run on the mobile environments. To evaluate the proposed scheme, we assessed the performance of simulation in term of average precision and F-score on two databases, commonly used in the field of image retrieval. The experimental results revealed that the proposed algorithm exhibited a significant improvement of over 14.4% in retrieval effectiveness, compared to OpenSURF. The main contribution of this paper is that the proposed approach achieves high accuracy and stability by using ASURF and DCD in searching for natural image on mobile platform.

Vision System for NN-based Emotion Recognition (신경회로망 기반 감성 인식 비젼 시스템)

  • Lee, Sang-Yun;Kim, Sung-Nam;Joo, Young-Hoon;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2036-2038
    • /
    • 2001
  • In this paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using vision system. In the proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Also, we use R,G,B(red, green, blue) color image data and the gray image data to get the highly trust rate of feature point extraction. For this, we propose an algorithm to extract four feature points (eyebrow, eye, nose, mouth) from the face image acquired by the color CCD camera and find some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector(position and distance among the feature points). Finally, we show the practical application possibility of the proposed method.

  • PDF

Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition (얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발)

  • Oh, Sun-Moon;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the face recognition system using HNMA(Hippocampal Neuron Modeling Algorithm) which can remodel the cerebral cortex and hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature-vector of the face images very fast and construct the optimized feature each image. The system is composed of two parts. One is feature-extraction and the other is teaming and recognition. In the feature extraction part, it can construct good-classified features applying PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) in order. In the learning part, it cm table the features of the image data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in the dentate gyrus region and remove the noise through the associate memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are face changes, pose changes and low quality image. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

Video Stabilization Algorithm of Shaking image using Deep Learning (딥러닝을 활용한 흔들림 영상 안정화 알고리즘)

  • Lee, Kyung Min;Lin, Chi Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.145-152
    • /
    • 2019
  • In this paper, we proposed a shaking image stabilization algorithm using deep learning. The proposed algorithm utilizes deep learning, unlike some 2D, 2.5D and 3D based stabilization techniques. The proposed algorithm is an algorithm that extracts and compares features of shaky images through CNN network structure and LSTM network structure, and transforms images in reverse order of movement size and direction of feature points through the difference of feature point between previous frame and current frame. The algorithm for stabilizing the shake is implemented by using CNN network and LSTM structure using Tensorflow for feature extraction and comparison of each frame. Image stabilization is implemented by using OpenCV open source. Experimental results show that the proposed algorithm can be used to stabilize the camera shake stability in the up, down, left, and right shaking images.

Performance Comparison of Triangular Feature Extraction Algorithm (삼각특징추출 알고리즘의 성능비교)

  • 서석배;김영호;김대진;강대성
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.73-76
    • /
    • 2000
  • 본 논문에서는 기존의 8개의 삼각형을 이용한 특징추출 알고리즘을 개선하여 8의 배수로 특징의 수를 증가시키는 알고리즘을 제안하고, 블록기반 특징추출의 알고리즘과 성능을 비교한다.

  • PDF

Realtime Face Recognition by Analysis of Feature Information (특징정보 분석을 통한 실시간 얼굴인식)

  • Chung, Jae-Mo;Bae, Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.299-302
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of$.$10 persons show that the proposed method yields high recognition rates.

  • PDF