• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.037 seconds

Representative Feature Extraction of Objects using VQ and Its Application to Content-based Image Retrieval (VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용 기반 영상 검색)

  • Jang, Dong-Sik;Jung, Seh-Hwan;Yoo, Hun-Woo;Sohn, Yong--Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.724-732
    • /
    • 2001
  • In this paper, a new method of feature extraction of major objects to represent an image using Vector Quantization(VQ) is proposed. The principal features of the image, which are used in a content-based image retrieval system, are color, texture, shape and spatial positions of objects. The representative color and texture features are extracted from the given image using VQ(Vector Quantization) clustering algorithm with a general feature extraction method of color and texture. Since these are used for content-based image retrieval and searched by objects, it is possible to search and retrieve some desirable images regardless of the position, rotation and size of objects. The experimental results show that the representative feature extraction time is much reduced by using VQ, and the highest retrieval rate is given as the weighted values of color and texture are set to 0.5 and 0.5, respectively, and the proposed method provides up to 90% precision and recall rate for 'person'query images.

  • PDF

Feature Extraction and Recognition of Myanmar Characters Based on Deep Learning (딥러닝 기반 미얀마 문자의 특징 추출 및 인식)

  • Ohnmar, Khin;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.977-984
    • /
    • 2022
  • Recently, with the economic development of Southeast Asia, the use of information devices is widely spreading, and the demand for application services using intelligent character recognition is increasing. This paper discusses deep learning-based feature extraction and recognition of Myanmar, one of the Southeast Asian countries. Myanmar alphabet (33 letters) and Myanmar numerals (10 numbers) are used for feature extraction. In this paper, the number of nine features are extracted and more than three new features are proposed. Extracted features of each characters and numbers are expressed with successful results. In the recognition part, convolutional neural networks are used to assess its execution on character distinction. Its algorithm is implemented on captured image data-sets and its implementation is evaluated. The precision of models on the input data set is 96 % and uses a real-time input image.

Enhanced Extraction of Traversable Region by Combining Scene Clustering with 3D World Modeling based on CCD/IR Image (CCD/IR 영상 기반의 3D 월드모델링과 클러스터링의 통합을 통한 주행영역 추출 성능 개선)

  • Kim, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2008
  • Accurate extraction of traversable region is a critical issue for autonomous navigation of unmanned ground vehicle(UGV). This paper introduces enhanced extraction of traversable region by combining scene clustering with 3D world modeling using CCD(Charge-Coupled Device)/IR(Infra Red) image. Scene clustering is developed with K-means algorithm based on CCD and IR image. 3D world modeling is developed by fusing CCD and IR stereo image. Enhanced extraction of traversable regions is obtained by combining feature of extraction with a clustering method and a geometric characteristic of terrain derived by 3D world modeling.

Iris Pattern Recognition Using the DFT Coefficients (DFT계수를 이용한 홍채 인식)

  • 고현주;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.237-240
    • /
    • 2001
  • In this work, we will present an iris pattern recognition method as a biometrically based technology for personal identification and authentication. For this, we propose a new algorithm for extraction unique feature from images of the iris of the human eye and representing these feature using the discrete fourier transform. From the computational simplicity of the adopted transform, we can obtain more fast and efficient results than previous ones.

  • PDF

Music Identification Using Its Pattern

  • Islam, Mohammad Khairul;Lee, Hyung-Jin;Paul, Anjan Kumar;Baek, Joong-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.419-420
    • /
    • 2007
  • In this method, we extract peak periods using energy contents of each segment of music. This feature extraction method is equally applied on both the training and query music. Similarity matching algorithm is applied on the extracted feature values for identifying the query music from the database. The retrieval accuracy of 95% of our method is a pretty good result.

  • PDF

Faster D2-Net for Screen Image Matching (스크린 이미지 매칭을 위한 Faster D2-Net)

  • Chun, Hye-Won;Han, Seong-Soo;Jeong, Chang-Sung
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.429-432
    • /
    • 2021
  • 스마트 기기와 애플리케이션의 테스트를 위해 빠르고 정확하게 스마트 기기 화면 상에서 테스트가 필요한 위치를 추출해야 한다. 필요한 위치를 추출할 때 스마트 기기 화면과 테스트할 수 있는 영역의 매칭 방식을 사용하는데 이를 위해 이미지의 변형이 발생해도 원하는 영역의 matching point 을 빠르고 정확하게 추출하는 feature matching 방식의 D2-Net 의 feature extraction 모델과 fitting algorithm 을 변경하였다.

Walking Motion Detection via Classification of EMG Signals

  • Park, H.L.;H.J. Byun;W.G. Song;J.W. Son;J.T Lim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.84.4-84
    • /
    • 2001
  • In this paper, we present a method to classify electromyogram (EMG) signals which are utilized to be control signals for patient-responsive walker-supported system for paraplegics. Patterns of EMG signals for dierent walking motions are classied via adequate filtering, real EMG signal extraction, AR-modeling, and modified self-organizing feature map (MSOFM). More efficient signal processing is done via a data-reducing extraction algorithm. Moreover, MSOFM classifies and determines the classified results are presented for validation.

  • PDF

Automatic Registration between Multiple IR Images Using Simple Pre-processing Method and Modified Local Features Extraction Algorithm (단순 전처리 방법과 수정된 지역적 피쳐 추출기법을 이용한 다중 적외선영상 자동 기하보정)

  • Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.485-494
    • /
    • 2017
  • This study focuses on automatic image registration between multiple IR images using simple preprocessing method and modified local feature extraction algorithm. The input images were preprocessed by using the median and absolute value after histogram equalization, and it could be effectively applied to reduce the brightness difference value between images by applying the similarity of extracted features to the concept of angle instead of distance. The results were evaluated using visual and inverse RMSE methods. The features that could not be achieved by the existing local feature extraction technique showed high image matching reliability and application convenience. It is expected that this method can be used as one of the automatic registration methods between multi-sensor images under specific conditions.

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.

A Fast and Scalable Image Retrieval Algorithms by Leveraging Distributed Image Feature Extraction on MapReduce (MapReduce 기반 분산 이미지 특징점 추출을 활용한 빠르고 확장성 있는 이미지 검색 알고리즘)

  • Song, Hwan-Jun;Lee, Jin-Woo;Lee, Jae-Gil
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1474-1479
    • /
    • 2015
  • With mobile devices showing marked improvement in performance in the age of the Internet of Things (IoT), there is demand for rapid processing of the extensive amount of multimedia big data. However, because research on image searching is focused mainly on increasing accuracy despite environmental changes, the development of fast processing of high-resolution multimedia data queries is slow and inefficient. Hence, we suggest a new distributed image search algorithm that ensures both high accuracy and rapid response by using feature extraction of distributed images based on MapReduce, and solves the problem of memory scalability based on BIRCH indexing. In addition, we conducted an experiment on the accuracy, processing time, and scalability of this algorithm to confirm its excellent performance.