• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.026 seconds

Image Feature Extraction using Genetic Algorithm (유전자 알고리즘을 이용한 영상 특징 추출)

  • Park, Sang-Sung;A, Dong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2006
  • Multimedia data is increasing rapidly by development of computer Information technology. Specially, quick and accurate processing of image data is required in image retrieval field. But it is difficult to guarantee both quickness and accuracy. This article suggests the algorithm that extracts representative features of image using genetic algorithm to solve this problem. This algorithm guarantees quickness and accuracy of retrieval by extracting representative features of image. We used color and texture as feature of image. Experiment shows that feature extracting method that is proposed is more accurate than existing study. So this study establishes propriety of method that is proposed.

  • PDF

Feature Extraction of Asterias Amurensis by Using the Multi-Directional Linear Scanning and Convex Hull (다방향 선형 스캐닝과 컨벡스 헐을 이용한 아무르불가사리의 특징 추출)

  • Shin, Hyun-Deok;Jeon, Young-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.99-107
    • /
    • 2011
  • The feature extraction of asterias amurensis by using patterns is difficult to extract all the concave and convex features of asterias amurensis nor classify concave and convex. Concave and convex as important structural features of asterias amurensis are the features which should be found and the classification of concave and convex is also necessary for the recognition of asterias amurensis later. Accordingly, this study suggests the technique to extract the features of concave and convex, the main features of asterias amurensis. This technique classifies the concave and convex features by using the multi-directional linear scanning and form the candidate groups of the concave and convex feature points and decide the feature points of the candidate groups and apply convex hull algorithm to the extracted feature points. The suggested technique efficiently extracts the concave and convex features, the main features of asterias amurensis by dividing them. Accordingly, it is expected to contribute to the studies on the recognition of asterias amurensis in the future.

Two-Stage Neural Networks for Sign Language Pattern Recognition (수화 패턴 인식을 위한 2단계 신경망 모델)

  • Kim, Ho-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we present a sign language recognition model which does not use any wearable devices for object tracking. The system design issues and implementation issues such as data representation, feature extraction and pattern classification methods are discussed. The proposed data representation method for sign language patterns is robust for spatio-temporal variances of feature points. We present a feature extraction technique which can improve the computation speed by reducing the amount of feature data. A neural network model which is capable of incremental learning is described and the behaviors and learning algorithm of the model are introduced. We have defined a measure which reflects the relevance between the feature values and the pattern classes. The measure makes it possible to select more effective features without any degradation of performance. Through the experiments using six types of sign language patterns, the proposed model is evaluated empirically.

Design of an Efficient VLSI Architecture and Verification using FPGA-implementation for HMM(Hidden Markov Model)-based Robust and Real-time Lip Reading (HMM(Hidden Markov Model) 기반의 견고한 실시간 립리딩을 위한 효율적인 VLSI 구조 설계 및 FPGA 구현을 이용한 검증)

  • Lee Chi-Geun;Kim Myung-Hun;Lee Sang-Seol;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.159-167
    • /
    • 2006
  • Lipreading has been suggested as one of the methods to improve the performance of speech recognition in noisy environment. However, existing methods are developed and implemented only in software. This paper suggests a hardware design for real-time lipreading. For real-time processing and feasible implementation, we decompose the lipreading system into three parts; image acquisition module, feature vector extraction module, and recognition module. Image acquisition module capture input image by using CMOS image sensor. The feature vector extraction module extracts feature vector from the input image by using parallel block matching algorithm. The parallel block matching algorithm is coded and simulated for FPGA circuit. Recognition module uses HMM based recognition algorithm. The recognition algorithm is coded and simulated by using DSP chip. The simulation results show that a real-time lipreading system can be implemented in hardware.

  • PDF

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

Classification of Insulation Fault Signals for High Voltage Motors Stator Winding using Image Signal Process Technique (영상신호처리 기법을 이용한 고압전동기 고정자권선 절연결함신호 분류)

  • Park, Jae-Jun;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Pattern classification of single and multiple discharge sources was applied using a wavelet image signal method in which a feature extraction was applied using a hidden sub-image. A feature extracting method that used vertical and horizontal images using an MSD method was applied to an averaging process for the scale of pulses for the phase. A feature extracting process for the preprocessing of the input of a neural network was performed using an inverse transformation of the horizontal, vertical, and diagonal sub-images. A back propagation algorithm in a neural network was used to classify defective signals. An algorithm for wavelet image processing was developed. In addition, the defective signal was classified using the extracted value that was quantified for the input of a neural network.

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part II : Local Inspection Planning -

  • Cho, Myeong-Woo;Lee, Hong-Hee;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1358-1367
    • /
    • 2004
  • As a part II of theis research, new local inspection planning strategy is proposed in this paper based on the proposed inspection feature extraction method. In the local inspection planning stage, each feature is decomposed into its constituent geometric elements for more effective inspection planning. The local inspection planning for the decomposed features are performed to determine: (1) the suitable number of measuring points, (2) their locations, and (3) the optimum probing paths to minimize measuring errors and times. The fuzzy set theory, the Hammersley's algorithm and the TSP method are applied for the local inspection planning. Also, a new collision checking algorithm is proposed for the probe and/or probe holder based on the Z-map concept. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed methods.

A feature extraction algorithm for process planning

  • Park, Hwa-Gyoo;Kim, Hyun;Oh, Chi-Jae;Baek, Jong-Myong;Go, Young-Chel
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.41-44
    • /
    • 1997
  • This paper is to provide an integration approach between design and process planning for mechanical parts, using feature recognition. We develop a method to extract each individual feature of an object from 3D modeling data using face-edge graph based algorithm and then propose an approach to recognize the volumic form features using heuristic rules. we demonstrate the proposed approaches are effective for such basic shapes as pocket, slot, through hole, etc.

  • PDF

A Study on the Design of Binary Decision Tree using FCM algorithm (FCM 알고리즘을 이용한 이진 결정 트리의 구성에 관한 연구)

  • 정순원;박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1536-1544
    • /
    • 1995
  • We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.

  • PDF

Dynamic Stitching Algorithm for 4-channel Surround View System using SIFT Features (SIFT 특징점을 이용한 4채널 서라운드 시스템의 동적 영상 정합 알고리즘)

  • Joongjin Kook;Daewoong Kang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.56-60
    • /
    • 2024
  • In this paper, we propose a SIFT feature-based dynamic stitching algorithm for image calibration and correction of a 360-degree surround view system. The existing surround view system requires a lot of processing time and money because in the process of image calibration and correction. The traditional marker patterns are placed around the vehicle and correction is performed manually. Therefore, in this study, images captured with four fisheye cameras mounted on the surround view system were distorted and then matched with the same feature points in adjacent images through SIFT-based feature point extraction to enable image stitching without a fixed marker pattern.

  • PDF