• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.036 seconds

Semi-fragile Watermarking Scheme for H.264/AVC Video Content Authentication Based on Manifold Feature

  • Ling, Chen;Ur-Rehman, Obaid;Zhang, Wenjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4568-4587
    • /
    • 2014
  • Authentication of videos and images based on the content is becoming an important problem in information security. Unfortunately, previous studies lack the consideration of Kerckhoffs's principle in order to achieve this (i.e., a cryptosystem should be secure even if everything about the system, except the key, is public knowledge). In this paper, a solution to the problem of finding a relationship between a frame's index and its content is proposed based on the creative utilization of a robust manifold feature. The proposed solution is based on a novel semi-fragile watermarking scheme for H.264/AVC video content authentication. At first, the input I-frame is partitioned for feature extraction and watermark embedding. This is followed by the temporal feature extraction using the Isometric Mapping algorithm. The frame index is included in the feature to produce the temporal watermark. In order to improve security, the spatial watermark will be encrypted together with the temporal watermark. Finally, the resultant watermark is embedded into the Discrete Cosine Transform coefficients in the diagonal positions. At the receiver side, after watermark extraction and decryption, temporal tampering is detected through a mismatch between the frame index extracted from the temporal watermark and the observed frame index. Next, the feature is regenerate through temporal feature regeneration, and compared with the extracted feature. It is judged through the comparison whether the extracted temporal watermark is similar to that of the original watermarked video. Additionally, for spatial authentication, the tampered areas are located via the comparison between extracted and regenerated spatial features. Experimental results show that the proposed method is sensitive to intentional malicious attacks and modifications, whereas it is robust to legitimate manipulations, such as certain level of lossy compression, channel noise, Gaussian filtering and brightness adjustment. Through a comparison between the extracted frame index and the current frame index, the temporal tempering is identified. With the proposed scheme, a solution to the Kerckhoffs's principle problem is specified.

Development of Inspect Algorithm for Pallets Using Vision System

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.6-101
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the product(bad pallets). An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labeling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets ...

  • PDF

On Combining Genetic Algorithm (GA) and Wavelet for High Dimensional Data Reduction

  • Liu, Zhengjun;Wang, Changyao;Zhang, Jixian;Yan, Qin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1272-1274
    • /
    • 2003
  • In this paper, we present a new algorithm for high dimensional data reduction based on wavelet decomposition and Genetic Algorithm (GA). Comparative results show the superiority of our algorithm for dimensionality reduction and accuracy improvement.

  • PDF

Development of surface defect inspection algorithms for cold mill strip using tree structure (트리 구조를 이용한 냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyung-Min;Jung, Woo-Yong;Lee, Byung-Jin;Ryu, Gyung;Park, Gui-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.365-370
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip using tree structure. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, histogram-ratio features are calculated. The histogram-ratio feature is taken from the gray-level image. For the defect classification, we suggest a tree structure of which nodes are multilayer neural network clasifiers. The proposed algorithm reduced error rate comparing to one stage structure.

  • PDF

Untact Face Recognition System Based on Super-resolution in Low-Resolution Images (초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템)

  • Bae, Hyeon Bin;Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

The Extraction of End-Pixels in Feature Space for Remote Sensing Data and Its Applications

  • YUAN Lu;SUN Wei-dong
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.136-139
    • /
    • 2004
  • The extraction of 'end-pixels' (i.e. end-members) aims to quantify the abundance of different materials in a single pixel, which becomes popular in the subpixel analysis for hyperspectral dataset. In this paper, we present a new concept called 'End-Pixel of Features (EPF)' to extends the concept of end-pixels for multispectral data and even panchromatic data. The algorithm combines the advantages of previous simplex and clustering methods to search the EPFs in the feature space and reduce the effects of noise. Some experimental results show that, the proposed methodology can be successfully used to hyperspectral data and other remote sensing data.

  • PDF

Visual inspection algorithm of cold rolled strips by wavelet frame transform (Wavelet frame 변환을 이용한 냉연 시각검사 알고리듬)

  • Lee, Chang-Su;Choi, Jong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.372-377
    • /
    • 1998
  • This paper deals with the detection, feature extraction and classification of surface defects in cold rolled strips. Inspection systems are one of the most important fields in factory automation. Defects such as slipmark and dullmark can be effectively detected with a Gaussian matched filter because their shapes are similar to Gaussian. It is justified that the proposed WF(Wavelet Frame) method could be regarded as multiscale Gaussian matched filter which can be applied to the inspection of cold rolled strip. After a wavelet frame transform, the entropies and moments are computed for each subband which pass through both local low pass filter and nonlinear operator. With these features as input, a MLP(Multi Layer Perceptron) is used as a classifier. The proposed inspection method was applied to the real images with defects, and hence showed good performance. The role of each extracted feature is analyzed by KLT(Karhunen-Loeve Transform).

  • PDF

The Recognition of Korean Character Using Preceding Layer Driven MLP (Preceding Layer Driven 다층 퍼셉트론을 이용한 한글문자 인식)

  • 백승엽;김동훈;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.382-393
    • /
    • 1991
  • In this paper, we propose a method for recognizing printed Korean characters using the Preceding Layer Driven multi-layer perceptron. The new learning algorithm which assigns the weight values to an integer and makes use of the transfer function as the step function was presented to design the hardware. We obtained 522 Korean character-image as an experimental object through scanner with 600DPI resolution. The preprocessing for feature extraction of Korean character is the separation of individual character, noise elimination smoothing, thinnig, edge point extraction, branch point extraction, and stroke segmentation. The used feature data are the number of edge points and their shapes, the number of branch points, and the number of strokes with 8 directions.

  • PDF

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".