• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.031 seconds

Automatic Face Identification System Using Adaptive Face Region Detection and Facial Feature Vector Classification

  • Kim, Jung-Hoon;Do, Kyeong-Hoon;Lee, Eung-Joo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1252-1255
    • /
    • 2002
  • In this paper, face recognition algorithm, by using skin color information of HSI color coordinate collected from face images, elliptical mask, fratures of face including eyes, nose and mouth, and geometrical feature vectors of face and facial angles, is proposed. The proposed algorithm improved face region extraction efficacy by using HSI information relatively similar to human's visual system along with color tone information about skin colors of face, elliptical mask and intensity information. Moreover, it improved face recognition efficacy with using feature information of eyes, nose and mouth, and Θ1(ACRED), Θ2(AMRED) and Θ 3(ANRED), which are geometrical face angles of face. In the proposed algorithm, it enables exact face reading by using color tone information, elliptical mask, brightness information and structural characteristic angle together, not like using only brightness information in existing algorithm. Moreover, it uses structural related value of characteristics and certain vectors together for the recognition method.

  • PDF

Slab Region Localization for Text Extraction using SIFT Features (문자열 검출을 위한 슬라브 영역 추정)

  • Choi, Jong-Hyun;Choi, Sung-Hoo;Yun, Jong-Pil;Koo, Keun-Hwi;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

SEMI-AUTOMATIC 3D BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGES

  • Javzandulam, Tsend-Ayush;Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.606-609
    • /
    • 2006
  • Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results.┌阀؀䭏佈䉌ᔀ鳪떭臬隑駭验耀

  • PDF

Personal Verification using Feature Patterns of Palmprint (손바닥 특징패턴을 이용한 개인식별)

  • 전선배;임영도
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1437-1450
    • /
    • 1992
  • This paper describes the feature extraction of the interdigital regions of palm, and proposes a personal verification algorithm using the extracted features and the pattern types of those. The procedures of the feature extraction are as follows : first, the interdigital region is partitioned into several subregions, examining the phase of rigdes in each subregion, deciding the direction of that phase, and making the direction matrix of the region, we analyze this direction matrix to contain a feature pattern, and then, yield the first core. Second, applying the thinning to around the first core and tracing the thinned ridges, we yield the feature pattern types and second cores. Finally, the feature patterns coordinates included all of them are built. Then, distances and directions from each second core reaching to all the others are yielded from that coordinates. These informations are used to make a feature parameter. In our verification algorithm, such pattern types, the numbers of feature patterns, theses positions and feature parameters are used to analyze.

  • PDF

A study on the Restoration of Feature Information in STEPAP224 to Solid model (STEP AP224에 표현된 특징형상 정보의 솔리드 모델 복원에 관한 연구)

  • 김야일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.367-372
    • /
    • 2001
  • Feature restoration is that restore feature to 3D solid model using the feature information in STEP AP224. Feature is very important in CAPP, but feature information is defined very complicated in STEP AP224. This paper recommends the algorithm of extraction the feature information in physical STEP AP224file. This program import STEP AP224 file, parse the geometric and topological information, the tolerance data, and feature information line-by-line. After importation and parsing, store data into database. Feature restoration module analyze database including feature information, extract feature information, e.g. feature type, feature's parameter, etc., analyze the relationship and then restore feature to 3D solid model.

  • PDF

Effective De-blurring Algorithm for the Vibration Blur of the Interlaced Scan Type Digital Camera (인터레이스 스캔 방식 디지털 카메라 떨림 블러에 대한 효과적 제거 알고리즘)

  • Chon, Jae-Choon;Kim, Hyong-Suk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.559-566
    • /
    • 2005
  • An effective do-blurring algorithm is proposed to remove the blur of the even and the odd line images of the interlaced scan type camera. n the object or the camera moves fast while the interlaced scan type digital camera is acquiring images, blur is often created due to the misalignment between two images of even and odd lines. In this paper, the blurred original image is separated into the even and the odd line images of the half size. Two full sized images are generated using interpolation technique based on these two in ages. Again, these images are signed and combined through the processes of feature extraction, matching, sub-pixel matching, outlier removal, and mosaicking. De-blurring simulations about the images of different camera motions have been done.

RESEARCH ON SENTIMENT ANALYSIS METHOD BASED ON WEIBO COMMENTS

  • Li, Zhong-Shi;He, Lin;Guo, Wei-Jie;Jin, Zhe-Zhi
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.599-612
    • /
    • 2021
  • In China, Weibo is one of the social platforms with more users. It has the characteristics of fast information transmission and wide coverage. People can comment on a certain event on Weibo to express their emotions and attitudes. Judging the emotional tendency of users' comments is not only beneficial to the monitoring of the management department, but also has very high application value for rumor suppression, public opinion guidance, and marketing. This paper proposes a two-input Adaboost model based on TextCNN and BiLSTM. Use the TextCNN model that can perform local feature extraction and the BiLSTM model that can perform global feature extraction to process comment data in parallel. Finally, the classification results of the two models are fused through the improved Adaboost algorithm to improve the accuracy of text classification.

3D Mesh Model Exterior Salient Part Segmentation Using Prominent Feature Points and Marching Plane

  • Hong, Yiyu;Kim, Jongweon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1418-1433
    • /
    • 2019
  • In computer graphics, 3D mesh segmentation is a challenging research field. This paper presents a 3D mesh model segmentation algorithm that focuses on removing exterior salient parts from the original 3D mesh model based on prominent feature points and marching plane. To begin with, the proposed approach uses multi-dimensional scaling to extract prominent feature points that reside on the tips of each exterior salient part of a given mesh. Subsequently, a set of planes intersect the 3D mesh; one is the marching plane, which start marching from prominent feature points. Through the marching process, local cross sections between marching plane and 3D mesh are extracted, subsequently, its corresponding area are calculated to represent local volumes of the 3D mesh model. As the boundary region of an exterior salient part generally lies on the location at which the local volume suddenly changes greatly, we can simply cut this location with the marching plane to separate this part from the mesh. We evaluated our algorithm on the Princeton Segmentation Benchmark, and the evaluation results show that our algorithm works well for some categories.

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.