• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.034 seconds

Text Extraction in HIS Color Space by Weighting Scheme

  • Le, Thi Khue Van;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • A robust and efficient text extraction is very important for an accuracy of Optical Character Recognition (OCR) systems. Natural scene images with degradations such as uneven illumination, perspective distortion, complex background and multi color text give many challenges to computer vision task, especially in text extraction. In this paper, we propose a method for extraction of the text in signboard images based on a combination of mean shift algorithm and weighting scheme of hue and saturation in HSI color space for clustering algorithm. The number of clusters is determined automatically by mean shift-based density estimation, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. Weighting scheme of hue and saturation is used for formulation a new distance measure in cylindrical coordinate for text extraction. The obtained experimental results through various natural scene images are presented to demonstrate the effectiveness of our approach.

  • PDF

A Study on the RFID Biometrics System Based on Hippocampal Learning Algorithm Using NMF and LDA Mixture Feature Extraction (NMF와 LDA 혼합 특징추출을 이용한 해마 학습기반 RFID 생체 인증 시스템에 관한 연구)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.46-54
    • /
    • 2006
  • Recently, the important of a personal identification is increasing according to expansion using each on-line commercial transaction and personal ID-card. Although a personal ID-card embedded RFID(Radio Frequency Identification) tag is gradually increased, the way for a person's identification is deficiency. So we need automatic methods. Because RFID tag is vary small storage capacity of memory, it needs effective feature extraction method to store personal biometrics information. We need new recognition method to compare each feature. In this paper, we studied the face verification system using Hippocampal neuron modeling algorithm which can remodel the hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature vector of the face images very fast. and construct the optimized feature each image. The system is composed of two parts mainly. One is feature extraction using NMF(Non-negative Matrix Factorization) and LDA(Linear Discriminants Analysis) mixture algorithm and the other is hippocampal neuron modeling and recognition simulation experiments confirm the each recognition rate, that are face changes, pose changes and low-level quality image. The results of experiments, we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to the existing method.

Pulse-Coded Train and QRS Feature extraction Using Linear Prediction (선형예측법을 이용한 심전도 신호의 부호화와 특징추출)

  • Song, Chul-Gyu;Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.175-178
    • /
    • 1992
  • This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.

  • PDF

Real-Time Automatic Human Face Detection and Recognition System Using Skin Colors of Face, Face Feature Vectors and Facial Angle Informations (얼굴피부색, 얼굴특징벡터 및 안면각 정보를 이용한 실시간 자동얼굴검출 및 인식시스템)

  • Kim, Yeong-Il;Lee, Eung-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.491-500
    • /
    • 2002
  • In this paper, we propose a real-time face detection and recognition system by using skin color informations, geometrical feature vectors of face, and facial angle informations from color face image. The proposed algorithm improved face region extraction efficiency by using skin color informations on the HSI color coordinate and face edge information. And also, it improved face recognition efficiency by using geometrical feature vectors of face and facial angles from the extracted face region image. In the experiment, the proposed algorithm shows more improved recognition efficiency as well as face region extraction efficiency than conventional methods.

Global Coordinate Extraction of IC Chip Pattern Using Form Matching (형태정합을 이용한 집적회로 패턴의 전체좌표 추출)

  • Ahn, Hyun-Sik;Cho, Seok-Je;Lee, Chul-Dong;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.120-126
    • /
    • 1989
  • IC chip layout pattern recognition algorithms using image processing techniques are being developed for the automation of manufacturing and inspecting chips. Recognitioin of chip pattern requires feature extraction from nach rrame of chip image adn needs to match the feature data through all frames. In this paper, vertex position and form having layout information are extracted by the feature straightening algorithm, and global coordinates of layout pattern are extracted by the feature straightening algorithm, and global coordinates of layout pattern are obtainnd by vertex form matching from the overlapped area of neighbour frame.

  • PDF

Divided SOFM training and feature extraction using template matching classifier (템플레이트 매칭 분류를 이용한 SOFM의 분할 학습과 특징 추출)

  • 서석배;하성욱;강대성
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.705-708
    • /
    • 1998
  • In this paper, a new algorithm is proposed that the template matching is used to devide SOFM (self-organizig feature map) for fast learning and to extract features for considering input data types. In order to verify the superoprity of the proposed algorithm, applied to the recognition of handwritten numerals. Templates of handwritten numerals are created by a line of external-contact.

  • PDF

Feature Extraction Of Content-based image retrieval Using object Segmentation and HAQ algorithm (객체 분할과 HAQ 알고리즘을 이용한 내용 기반 영상 검색 특징 추출)

  • 김대일;홍종선;장혜경;김영호;강대성
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • Compared with other features of the image, color features are less sensitive to noise and background complication. Besides, this adding to object segmentation has more accuracy of image retrieval. This paper presents object segmentation and HAQ(Histogram Analysis and Quantization) algorithm approach to extract features(the object information and the characteristic colors) of an image. The empirical results shows that this method presents exactly spatial and color information of an image as image retrieval's feature.

  • PDF

Panoramic Video Generation Method Based on Foreground Extraction (전경 추출에 기반한 파노라마 비디오 생성 기법)

  • Kim, Sang-Hwan;Kim, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.441-445
    • /
    • 2011
  • In this paper, we propose an algorithm for generating panoramic videos using fixed multiple cameras. We estimate a background image from each camera. Then we calculate perspective relationships between images using extracted feature points. To eliminate stitching errors due to different image depths, we process background images and foreground images separately in the overlap regions between adjacent cameras by projecting regions of foreground images selectively. The proposed algorithm can be used to enhance the efficiency and convenience of wide-area surveillance systems.

Power Quality Disturbance Classification using Decision Fusion (결정결합 방법을 이용한 전력외란 신호의 식별)

  • 김기표;김병철;남상원
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.915-918
    • /
    • 2000
  • In this paper, we propose an efficient feature vector extraction and decision fusion methods for the automatic classification of power system disturbances. Here, FFT and WPT(wavelet packet transform) are und to extract an appropriate feature for classifying power quality disturbances with variable properties. In particular, the WPT can be utilized to develop an adaptable feature extraction algorithm using best basis selection. Furthermore. the extracted feature vectors are applied as input to the decision fusion system which combines the decisions of several classifiers having complementary performances, leading to improvement of the classification performance. Finally, the applicability of the proposed approach is demonstrated using some simulations results obtained by analyzing power quality disturbances data generated by using Matlab.

  • PDF

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.