• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.027 seconds

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

Wavelet-based Feature Extraction Algorithm for an Iris Recognition System

  • Panganiban, Ayra;Linsangan, Noel;Caluyo, Felicito
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.425-434
    • /
    • 2011
  • The success of iris recognition depends mainly on two factors: image acquisition and an iris recognition algorithm. In this study, we present a system that considers both factors and focuses on the latter. The proposed algorithm aims to find out the most efficient wavelet family and its coefficients for encoding the iris template of the experiment samples. The algorithm implemented in software performs segmentation, normalization, feature encoding, data storage, and matching. By using the Haar and Biorthogonal wavelet families at various levels feature encoding is performed by decomposing the normalized iris image. The vertical coefficient is encoded into the iris template and is stored in the database. The performance of the system is evaluated by using the number of degrees of freedom, False Reject Rate (FRR), False Accept Rate (FAR), and Equal Error Rate (EER) and the metrics show that the proposed algorithm can be employed for an iris recognition system.

The Development of On-line Diagnosis Algorithm for Induction Motor Using Current and Flux sensors (전류 및 자속센서를 이용한 유동전동기 온라인 상태진단 알고리즘 개발)

  • Han, Sang-Bo;Hwang, Don-Ha;Kang, Dong-Sik;Park, Jae-Youn;Koh, Hee-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • In this work, the development of the diagnosis algorithm is carried out for identifying health and faulted conditions in three-phase induction motors. The algorithm consists of feature calculation, feature extraction, and feature classification procedures in sequence. Signals for this algorithm are acquired by current and flux sensors simultaneously, the latter is to measure the change of magnetic flux at the air-gap, This work proposes the efficient diagnosis method for induction motors by developing the powerful algorithm. The calculated features show a good linearity according to faults severities. Moreover. the final results show a good classification rate on motor conditions.

  • PDF

Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature (HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘)

  • 김대일;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • In this paper, we propose an efficient feature extraction and image retrieval algorithm for content-based retrieval method. First, we extract the object using Gaussian edge detector for input image which is key frames of MPEG video and extract the object features that are location feature, distributed dimension feature and invariant moments feature. Next, we extract the characteristic color feature using the proposed HAQ(Histogram Analysis md Quantization) algorithm. Finally, we implement an retrieval of four features in sequence with the proposed matching method for query image which is a shot frame except the key frames of MPEG video. The purpose of this paper is to propose the novel content-based image retrieval algerian which retrieves the key frame in the shot boundary of MPEG video belonging to the scene requested by user. The experimental results show an efficient retrieval for 836 sample images in 10 music videos using the proposed algorithm.

Object Feature Extraction Using Double Rearrangement of the Corner Region

  • Lee, Ji-Min;An, Young-Eun
    • Journal of Integrative Natural Science
    • /
    • v.12 no.4
    • /
    • pp.122-126
    • /
    • 2019
  • In this paper, we propose a simple and efficient retrieval technique using the feature value of the corner region, which is one of the shape information attributes of images. The proposed algorithm extracts the edges and corner points of the image and rearranges the feature values of the corner regions doubly, and then measures the similarity with the image in the database using the correlation of these feature values as the feature vector. The proposed algorithm is confirmed to be more robust to rotation and size change than the conventional image retrieval method using the corner point.

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • In this paper we propose a new feature vector for recognition of the facial expression based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are invariant under translation rotation, and scale of an facial expression imege. The Algorithm for recognition of a facial expression contains two parts: the extraction of feature vector and the recognition process. The extraction of feature vector are comprised of modified 2-D conditional moments based on estimated Gibbs distribution for an facial image. In the facial expression recognition phase, we use discrete left-right HMM which is widely used in pattern recognition. In order to evaluate the performance of the proposed scheme, experiments for recognition of four universal expression (anger, fear, happiness, surprise) was conducted with facial image sequences on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 95%.

  • PDF

Feature Extraction Algorithm from Polygonal Model using Implicit Surface Fitting (음함수 곡면 맞춤을 이용한 다각형 모델로부터 특징 추출 알고리즘)

  • Kim, Soo-Kyun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.1
    • /
    • pp.50-57
    • /
    • 2009
  • This paper proposes a extraction of feature lines on a polygonal model using local implicit surface fitting technique. To extract feature lines on a polygonal model, the previous technique addressed to compute the curvature and their derivatives at mesh vertices via global implicit surface fitting. It needs a user-specified precision parameter for finding an accurate projection of the mesh vertices onto an approximating implicit surface and requires high-time consumption. But we use a local implicit surface fitting technique to estimate the local differential information near a vertex by means of an approximating surface. Feature vertices are easily detected as zero-crossings, and can then be connected along the direction of principal curvature. Our method, demonstrated on several large polygonal models, produces a good fit which leads to improved visualization.

  • PDF

A Feature Vector Extraction Method For the Automatic Classification of Power Quality Disturbances (전력 외란 자동 식별을 위한 특징 벡터 추출 기법)

  • Lee, Chul-Ho;Lee, Jae-Sang;Cho, Kwan-Young;Chung, Ji-Hyun;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.404-406
    • /
    • 1996
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FFT, DWT(Discrete Wavelet Transform), and data compression are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 7-class power quality disturbances generated by the EMTP are also provided.

  • PDF

A Study on Robust Pattern Classification of Lung Sounds for Diagnosis of Pulmonary Dysfunction in Noise Environment (폐질환 진단을 위한 잡음환경에 강건한 폐음 패턴 분류법에 관한 연구)

  • Yeo, Song-Phil;Jeon, Chang-Ik;Yoo, Se-Keun;Kim, Duk-Young;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper, a robust pattern classification of breath sounds for the diagnosis of pulmonary dysfunction in noise environment is proposed. The feature parameter extraction method by highpass lifter algorithm and PM(projection measure) algorithm are used. 17 different groups of breath sounds are experimentally classified and investigated. The classification has been performed by 6 different types of combinations with proposed methods to evaluate the performances, such as ARC with EDM and LCC with EDM, WLCC with EDM, ARC with PM, LCC with PM, WLCC with PM. Furthermore, all feature parameters are extracted to 80th orders by 5th orders step, and all experiments are evaluated in increasing noise environments by degrees SNR 24dB to 0dB. As a results, WLCC which is derived from highpass lifter algorithm, is selected for the feature parameter extraction method. Pm is more robust than EDM in noisy environments to test and compare experimental results. WLCC with PM method(WLCC/PM) has a better performance in an increasing noise environment for diagnosis of pulmonary dysfunction.

Reconstruction of Disparity Map for the Polygonal Man-Made Structures (다각형 인공 지물의 시차도 복원)

  • 이대선;엄기문;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.43-57
    • /
    • 1995
  • This paper presents reconstruction of disparity in images. To achieve this, the algorithm was made up of two different procedures - one is extraction of boundaries for man-made structures and the other is matching of the structures. In the extraction of boundaries for man-made structures, we assume that man-made structures are composed of lines and the lines make up closed polygon. The convertional algorithms of the edges extraction may not perceive man-made structures and have problems that matching algorithms were too complex. This paper proposed sub-pixel boundaries extraction algorithm that fused split-and-merge and image improvement algorithms to overcome complexity. In matching procedure, feature-based algorithm that minimize the proposed cost function are used and the cost fuction considers movement of mid-points for left and right images to match structures. Because we could not obtain disparity of inner parts for the man-made structures, interpolation method was used. The experiment showed good results.