• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.03 seconds

Development of a rotation angle estimation algorithm of HMD using feature points extraction (특징점 추출을 통한 HMD 회전각측정 알고리즘 개발)

  • Ro, Young-Shick;Kim, Chul-Hee;Yun, Won-Jun;Yoon, Yoo-Kyoung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.360-362
    • /
    • 2009
  • In this paper, we studied for the real-time azimuthal measurement of HMD(Head Mounted Display) using the feature points detection to control the tele-operated vision system on the mobile robot. To give the sense of presence to the tele-operator, we used a HMD to display the remote scene, measured the rotation angle of the HMD on a real time basis, and transmitted the measured rotation angles to the mobile robot controller to synchronize the pan-tilt angles of remote camera with the HMD. In this paper, we suggest an algorithm for the real-time estimation of the HMD rotation angles using feature points extraction from pc-camera image.

  • PDF

Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks (신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계)

  • Kim, Kyoung-Min;Lyou, Kyoung;Jung, Woo-Yong;Park, Gwi-Tae;Park, Joong-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

AUTOMATIC SELECTION AND ADJUSTMENT OF FEATURES FOR IMAGE CLASSIFICATION

  • Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.525-528
    • /
    • 2009
  • Recently, image classification has been an important task in various fields. Generally, the performance of image classification is not good without the adjustment of image features. Therefore, it is desired that the way of automatic feature extraction. In this paper, we propose an image classification method which adjusts image features automatically. We assume that texture features are useful in image classification tasks because natural images are composed of several types of texture. Thus, the classification accuracy rate is improved by using distribution of texture features. We obtain texture features by calculating image features from a current considering pixel and its neighborhood pixels. And we calculate image features from distribution of textures feature. Those image features are adjusted to image classification tasks using Genetic Algorithm. We apply proposed method to classifying images into "head" or "non-head" and "male" or "female".

  • PDF

Wireless Channel Identification Algorithm Based on Feature Extraction and BP Neural Network

  • Li, Dengao;Wu, Gang;Zhao, Jumin;Niu, Wenhui;Liu, Qi
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.141-151
    • /
    • 2017
  • Effective identification of wireless channel in different scenarios or regions can solve the problems of multipath interference in process of wireless communication. In this paper, different characteristics of wireless channel are extracted based on the arrival time and received signal strength, such as the number of multipath, time delay and delay spread, to establish the feature vector set of wireless channel which is used to train backpropagation (BP) neural network to identify different wireless channels. Experimental results show that the proposed algorithm can accurately identify different wireless channels, and the accuracy can reach 97.59%.

Development of Robust Feature Recognition and Extraction Algorithm for Dried Oak Mushrooms (건표고의 외관특징 인식 및 추출 알고리즘 개발)

  • Lee, C.H.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.325-335
    • /
    • 1996
  • Visual features are crucial for monitoring the growth state, indexing the drying performance, and grading the quality of oak mushrooms. A computer vision system with neural net information processing technique was utilized to quantize quality factors of a dried oak mushrooms distributed over the cap and gill sides. In this paper, visual feature extraction algorithm were integrated with the neural net processing to deal with various fuzzy patterns of mushroom shapes and to compensate the fault sensitiveness of the crisp criteria and heuristic rules derived from the image processing results. The proposed algorithm improved the segmentation of the skin features of each side, the identification of cap and gill surfaces, the identification of stipe states and removal of the stipe, etc. And the visual characteristics of dried oak mushrooms were analyzed and primary visual features essential to tile quality evaluation were extracted and quantized. In this study, black and white gray images were captured and used for the algorithm development.

  • PDF

A Study on Implementation of the High Speed Feature Extraction System Based on Block Type Classification (블록 유형 분류 알고리즘 기반 고속 특징추출 시스템 구현에 관한 연구)

  • Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2019
  • In this paper, we propose a implementation approach of the high-speed feature extraction algorithm. The proposed method is based on the block type classification algorithm which reduces the computation time when target macro block is divided to smooth block type that has no image features. It is quantitatively identified that occurs at 29.5% of the total image using 200 standard test images with $64{\times}64$ macro block size. This means that within a standard test image containing various image information, 29.5% can reduce the complexity of the operation. When the proposed approach is applied to the Canny edge detection, the required latency of the edge detection can be completely eliminated, such as 2D derivative filter, gradient magnitude/direction computation, non-maximal suppression, adaptive threshold calculation, hysteresis thresholding. Also, it is expected that operation time of the feature detection can be reduced by applying block type classification algorithm to various feature extraction algorithms in this way.

Feature curve extraction from point clouds via developable strip intersection

  • Lee, Kai Wah;Bo, Pengbo
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

Feature Point Extraction of Hand Region Using Vision (비젼을 이용한 손 영역 특징 점 추출)

  • Jeong, Hyun-Suk;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2041-2046
    • /
    • 2009
  • In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.

Feature Vector Extraction and Automatic Classification for Transient SONAR Signals using Wavelet Theory and Neural Networks (Wavelet 이론과 신경회로망을 이용한 천이 수중 신호의 특징벡타 추출 및 자동 식별)

  • Yang, Seung-Chul;Nam, Sang-Won;Jung, Yong-Min;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • In this paper, feature vector extraction methods and classification algorithms for the automatic classification of transient signals in underwater are discussed. A feature vector extraction method using wavelet transform, which shows good performance with small number of coefficients, is proposed and compared with the existing classical methods. For the automatic classification, artificial neural networks such as multilayer perceptron (MLP), radial basis function (RBF), and MLP-Class are utilized, where those neural networks as well as extracted feature vectors are combined to improve the performance and reliability of the proposed algorithm. It is confirmed by computer simulation with Traco's standard transient data set I and simulated data that the proposed feature vector extraction method and classification algorithm perform well, assuming that the energy of a given transient signal is sufficiently larger than that of a ambient noise, that there are the finite number of noise sources, and that there does not exist noise sources more than two simultaneously.

  • PDF

Discolored Metal Pad Image Classification Based on Gabor Texture Features Using GPU (GPU를 이용한 Gabor Texture 특징점 기반의 금속 패드 변색 분류 알고리즘)

  • Cui, Xue-Nan;Park, Eun-Soo;Kim, Jun-Chul;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.778-785
    • /
    • 2009
  • This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.