• Title/Summary/Keyword: Feature based CAD

Search Result 132, Processing Time 0.03 seconds

A Parametric Approach to Feature-based Modeling (파라메트릭 접근방법에 의한 특징형상을 이용한 모델링)

  • 이재열;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.242-256
    • /
    • 1996
  • Although feature-based design is a promising approach to fully integrating CAD/CAM, current feature-based design approaches seldom provide methodologies to easily define and design features. This paper proposes a new approach to integrating parametric design with feature-based design to overcome those limitations by globally decomposing a design into a set of features and locally defining and positioning each feature by geometric constraints. Each feature is defined as a parametric shape which consists of a feature section, attributes, and a set of constraints. The generalized sketching and sweeping techniques are used to simplify the process of designing features. The proposed approach is knowledge-based and its computational efficiency in geometric reasoning is improved greatly. Parametrically designed features not only have the advantage of allowing users to efficiently perform design changes, but also provide designers with a natural design environment in which they can do their work more naturally and creatively.

  • PDF

A Persistent Naming of Shells

  • Marcheix, David
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.125-137
    • /
    • 2006
  • Nowadays, many commercial CAD systems support history-based, constraint-based and feature-based modeling. Unfortunately, most systems fail during the re-evaluation phase when various kind of topological changes occur. This issue is known as "persistent naming" which refers to the problem of identifying entities in an initial parametric model and matching them in the re-evaluated model. Most works in this domain focus on the persistent naming of atomic entities such as vertices, edges or faces. But very few of them consider the persistent naming of aggregates like shells (any set of faces). We propose in this paper a complete framework for identifying and matching any kind of entities based on their underlying topology, and particularly shells. The identifying method is based on the invariant structure of each class of form features (a hierarchical structure of shells) and on its topological evolution (an historical structure of faces). The matching method compares the initial and the re-evaluated topological histories, and computes two measures of topological similarity between any couple of entities occurring in both models. The naming and matching method has been implemented and integrated in a prototype of commercial CAD Software (Topsolid).

Editing Design Features Constrained by Feature Depedencies (구속조건을 가진 디자인 피쳐의 수정)

  • Woo, Yoon-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.395-404
    • /
    • 2007
  • Feature-based modeling and history-based modeling are the two main paradigms that are used in most of current CAD systems. Although these modeling paradigms make it easier for designers to create solid model, it may pose dependency constraints on features that are interacting one with another. When editing such features, these constraints often cause unpredictable and unacceptable results. For example, when a parent feature is deleted, the child features of the parent feature are also deleted. This entails re-generations of the deleted features, which requires additional modeling time. In order to complement this situation, we propose a method to delete only the features of interest by disconnecting the dependency constraints. This method can provide designers with more efficient way of model modification.

A Study on Efficient Image Processing and CAD-Vision System Interface (효율적인 화상자료 처리와 시각 시스템과 CAD시스템의 인터페이스에 관한 연구)

  • Park, Jin-Woo;Kim, Ki-Dong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.11-22
    • /
    • 1992
  • Up to now, most researches on production automation have concentrated on local automation, e. g. CAD, CAM, robotics, etc. However, to achieve total automation it is required to link each local modules such as CAD, CAM into a unified and integrated system. One such missing link is between CAD and computer vision system. This thesis is an attempt to link the gap between CAD and computer vision system. In this paper, we propose algorithms that carry out edge detection, thinning and pruning from the image data of manufactured parts, which are obtained from video camera and then transmitted to computer. We also propose a feature extraction and surface determination algorithm which extract informations from the image data. The informations are compatible to IGES CAD data. In addition, we suggest a methodology to reduce search efforts for CAD data bases. The methodology is based on graph submatching algorithm in GEFG(Generalized Edge Face Graph) representation for each part.

  • PDF

Geometric Feature Recognition Directly from Scanned Points using Artificial Neural Networks (신경회로망을 이용한 측정 점으로부터 특징형상 인식)

  • 전용태;박세형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.176-184
    • /
    • 2000
  • Reverse engineering (RE) is a process to create computer aided design (CAD) models from the scanned data of an existing part acquired using 3D position scanners. This paper proposes a novel methodology of extracting geometric features directly from a set of 3D scanned points, which utilizes the concepts of feature-based technology and artificial neural networks (ANNs). The use of ANN has enabled the development of a flexible feature-based RE application that can be trained to deal with various features. The following four main tasks were mainly investigated and implemented: (1) Data reduction; (2) edge detection; (3) ANN-based feature recognition; (4) feature extraction. This approach was validated with a variety of real industrial components. The test results show that the developed feature-based RE application proved to be suitable for reconstructing prismatic features such as block, pocket, step, slot, hole, and boss, which are very common and crucial in mechanical engineering products.

  • PDF

Development of Web Based Die Discrimination System by matching the information of vision with CAD Database (비전정보와 캐드 DB 의 매칭을 통한 웹기반 금형판별 시스템 개발)

  • 김세원;김동우;전병철;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.277-280
    • /
    • 2004
  • In recent die industry, web-based production control system is applied widely because of the improvement of IT technology. In result, many researches are published about remote monitoring at a long distance. The target of this study is to develop Die Discrimination System using web-based vision, and CAD API when client discriminates die in process at a long distance. Special feature of this system is to use 2D vision image and to match with DB. We can get discrimination result enough to want with short time and a little low precision in web-monitoring by development of this system.

  • PDF

A multi-user selective undo/redo approach for collaborative CAD systems

  • Cheng, Yuan;He, Fazhi;Xu, Bin;Han, Soonhung;Cai, Xiantao;Chen, Yilin
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • The engineering design process is a creative process, and the designers must repeatedly apply Undo/Redo operations to modify CAD models to explore new solutions. Undo/Redo has become one of most important functions in interactive graphics and CAD systems. Undo/Redo in a collaborative CAD system is also very helpful for collaborative awareness among a group of cooperative designers to eliminate misunderstanding and to recover from design error. However, Undo/Redo in a collaborative CAD system is much more complicated. This is because a single erroneous operation is propagated to other remote sites, and operations are interleaved at different sites. This paper presents a multi-user selective Undo/Redo approach in full distributed collaborative CAD systems. We use site ID and State Vectors to locate the Undo/Redo target at each site. By analyzing the composition of the complex CAD model, a tree-like structure called Feature Combination Hierarchy is presented to describe the decomposition of a CAD model. Based on this structure, the dependency relationship among features is clarified. B-Rep re-evaluation is simplified with the assistance of the Feature Combination Hierarchy. It can be proven that the proposed Undo/Redo approach satisfies the intention preservation and consistency maintenance correctness criteria for collaborative systems.

사출금형부품의 특징형상의 분류기법 개발

  • 경영민;조규갑;류광렬;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.456-460
    • /
    • 1993
  • 최근 제품의 설계와 제조의 동기화를 위해 제품설계 및 공정설계 분양에서 동시공학(concurrent engineering)의 개념을 도입한 부품의 특징형상(feature)에 의한 접근방법이 중요한 과제로 대두되고 있다. 특징형상은 CAD/CAM 통합을 위한 정보전달의 매개체로서 CAPP 시스템 개발시의 CAD/CAPP 인터페이스에 중요한 기능을 가진다. 제조분야에서의 특징형상 적용은 특징형상인식(feature recognition)과 특징형상에 의한 설계 (feature based design)의 두 가지 분야가 있으며, 이 두 분야 모두 특징형상의 상세한 정의와 분류를 필요로 한다. 본 연구에서는 특징형상의 기하학적인 정의 및 분류를 위한 체계를 제시하고, 사출금형의 구성부품을 대상으로 특징형상의 기하학적 속성으로부터 특징형상의 분류기법을 개발한다.

  • PDF

Geometrical Analysis on the Formation Mechanism of Milling Burr on Arbitrary Feature (임의형상의 버 발생 메카니즘의 기하학적 해석)

  • 이제열;안용진;김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.222-228
    • /
    • 2001
  • In the milling operation, the burr can be generated on the intersection of cutting tool and workpiece. Due to burr formation, we expect lower efficiency in the operation and the cost increase. In order to understand the burr formation mechanism in the milling operation on the arbitrary feature, we developed an algorithm to analyse and predict the exit burr formation mechanism. Firstly, the recognition of arbitrary shaped workpiece was done through the CAD data. This data includes point information on the vertices of the workpiece. Secondly, tile CAM data regarding tool geometry, tool path, cutting speed, and material data are retrieved to simulate the actual cutting process. Thirdly, we predict the exit burr formation on the edge of workpiece based on the geometric analysis. Lastly, an algorithm implemented in the Windows environment to visualize the burr formation simulation. With this information, we can predict which portion of workpiece would have the exit burr in advance so that we call manage to find a way to minimize the edit burr formation in the actual cutting.

  • PDF

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.