• Title/Summary/Keyword: Feature Vectors

Search Result 814, Processing Time 0.026 seconds

Adaptive Digital Watermarking with Perceptually Tuned Characteristic Based on Wavelet Transform (웨이브릿 변환영역에서 지각적 동조특성을 갖는 적응적 디지털 워터마킹)

  • 김현천;장봉주;서용수;김종진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.1008-1014
    • /
    • 2003
  • In this paper, we propose the image retrieval method based on object regions using bidirectional round filter in the wavelet transform domain. A conventional method that includes unnecessary background information reduce retrieval efficiency, because of the extraction of feature vectors from the whole region of subband. On proposed method, it extracts accurate feature vectors and keep certainly retrieval efficiency in case of reduced feature vectors, because of the extraction of feature vectors from the only extracted object region. Furthermore, it improve retrieval efficiency by removing unnecessary background information. Consequently, the retrieval efficiency is improved with 2.5%∼5.5% values, which have a little chances to vary according to characteristics of image.

  • PDF

Discriminative Manifold Learning Network using Adversarial Examples for Image Classification

  • Zhang, Yuan;Shi, Biming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2099-2106
    • /
    • 2018
  • This study presents a novel approach of discriminative feature vectors based on manifold learning using nonlinear dimension reduction (DR) technique to improve loss function, and combine with the Adversarial examples to regularize the object function for image classification. The traditional convolutional neural networks (CNN) with many new regularization approach has been successfully used for image classification tasks, and it achieved good results, hence it costs a lot of Calculated spacing and timing. Significantly, distrinct from traditional CNN, we discriminate the feature vectors for objects without empirically-tuned parameter, these Discriminative features intend to remain the lower-dimensional relationship corresponding high-dimension manifold after projecting the image feature vectors from high-dimension to lower-dimension, and we optimize the constrains of the preserving local features based on manifold, which narrow the mapped feature information from the same class and push different class away. Using Adversarial examples, improved loss function with additional regularization term intends to boost the Robustness and generalization of neural network. experimental results indicate that the approach based on discriminative feature of manifold learning is not only valid, but also more efficient in image classification tasks. Furthermore, the proposed approach achieves competitive classification performances for three benchmark datasets : MNIST, CIFAR-10, SVHN.

Character recognition using Hough transform (Hough변환을 이용한 문자인식)

  • 강선미;김봉석;황승옥;양윤모;김덕진
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.77-80
    • /
    • 1991
  • This paper proposes a new feature extraction method which is effectively used in character recognition, and validate the effectiveness through various computational methods for similiarity degree. To get feature vectors used in this method, Hough transform is applied to character image, which is used for edge extraction in image processing. By that transformation technique, strokes could be extracted and feature vectors constructed suitably. The characteristic of this method is solving the difficulties in stroke extraction through transform space analysis, which is induced by noise and blurring, and representing high recognition rate 99.3% within 10 candidates in relative low dimension.

Improvement of Historical-Hanja Recognition Using a Nonlinear Transform of Contour Directional Feature Vectors

  • Kim, Min Soo;Kim, Jin Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.503-511
    • /
    • 2004
  • In Korea, OCR-based techniques have been developed for digital library construction of historical documents. In this paper, we propose the nonlinear transform of contour directional feature (CDF) vectors using log it and power transforms with skewness criterion to enhance the discriminant power. Experiments were conducted using samples from Seung-jung-won diaries (Diaries of King's Secretaries). Our results show that proposed method outperforms the others like Box-Cox transform in this database.

A Study on the Removal of Unusual Feature Vectors in Speech Recognition (음성인식에서 특이 특징벡터의 제거에 대한 연구)

  • Lee, Chang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.561-567
    • /
    • 2013
  • Some of the feature vectors for speech recognition are rare and unusual. These patterns lead to overfitting for the parameters of the speech recognition system and, as a result, cause structural risks in the system that hinder the good performance in recognition. In this paper, as a method of removing these unusual patterns, we try to exclude vectors whose norms are larger than a specified cutoff value and then train the speech recognition system. The objective of this study is to exclude as many unusual feature vectors under the condition of no significant degradation in the speech recognition error rate. For this purpose, we introduce a cutoff parameter and investigate the resultant effect on the speaker-independent speech recognition of isolated words by using FVQ(Fuzzy Vector Quantization)/HMM(Hidden Markov Model). Experimental results showed that roughly 3%~6% of the feature vectors might be considered as unusual, and therefore be excluded without deteriorating the speech recognition accuracy.

Segmentation of Continuous Speech based on PCA of Feature Vectors (주요고유성분분석을 이용한 연속음성의 세그멘테이션)

  • 신옥근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.40-45
    • /
    • 2000
  • In speech corpus generation and speech recognition, it is sometimes needed to segment the input speech data without any prior knowledge. A method to accomplish this kind of segmentation, often called as blind segmentation, or acoustic segmentation, is to find boundaries which minimize the Euclidean distances among the feature vectors of each segments. However, the use of this metric alone is prone to errors because of the fluctuations or variations of the feature vectors within a segment. In this paper, we introduce the principal component analysis method to take the trend of feature vectors into consideration, so that the proposed distance measure be the distance between feature vectors and their projected points on the principal components. The proposed distance measure is applied in the LBDP(level building dynamic programming) algorithm for an experimentation of continuous speech segmentation. The result was rather promising, resulting in 3-6% reduction in deletion rate compared to the pure Euclidean measure.

  • PDF

Study on the Performance Enhancement of Radar Target Recognition Using Combining of Feature Vectors (특성 벡터 융합을 이용한 레이더 표적 인식 성능 향상에 관한 연구)

  • Lee, Seung-Jae;Choi, In-Sik;Chae, Dae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.928-935
    • /
    • 2013
  • This paper proposed a combining technique of feature vectors which improves the performance of radar target recognition. The proposed method obtains more information than monostatic or bistatic case by combining extracted feature vectors from two receivers. For verifying the performance of the proposed method, we calculated monostatic and bistatic RCS(BRCS) of three full-scale fighters by changing the receiver position. Then, the scattering centers are extracted using 1-D FFT-based CLEAN from the calculated RCS data. Scattering centers are used as feature vectors for neural network classifier. The results show that our method has the better performance than the monostatic or bistatic case.

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

Theoretical and experimental study on damage detection for beam string structure

  • He, Haoxiang;Yan, Weiming;Zhang, Ailin
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.327-344
    • /
    • 2013
  • Beam string structure (BSS) is introduced as a new type of hybrid prestressed string structures. The composition and mechanics features of BSS are discussed. The main principles of wavelet packet transform (WPT), principal component analysis (PCA) and support vector machine (SVM) have been reviewed. WPT is applied to the structural response signals, and feature vectors are obtained by feature extraction and PCA. The feature vectors are used for training and classification as the inputs of the support vector machine. The method is used to a single one-way arched beam string structure for damage detection. The cable prestress loss and web members damage experiment for a beam string structure is carried through. Different prestressing forces are applied on the cable to simulate cable prestress loss, the prestressing forces are calculated by the frequencies which are solved by Fourier transform or wavelet transform under impulse excitation. Test results verify this method is accurate and convenient. The damage cases of web members on the beam are tested to validate the efficiency of the method presented in this study. Wavelet packet decomposition is applied to the structural response signals under ambient vibration, feature vectors are obtained by feature extraction method. The feature vectors are used for training and classification as the inputs of the support vector machine. The structural damage position and degree can be identified and classified, and the test result is highly accurate especially combined with principle component analysis.

Study on ERP Detection Algorithm Using SVM with wavelet feature vector (웨이블릿 특징 벡터 기반 SVM을 이용한 ERP 검출 알고리즘에 관한 연구)

  • Lee, Young-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • In this study we performed the experiment to detect the ERP using SVM with wavelet features. The EEG signal that is generated visual stimulated ERP database in SCCN applied for the experiment. The feature vectors for experiment are categorized frequency and continuous wavelet- based vectors. In experimental results, the detection rate of SVM with wavelet feature vectors improved above 10% comparing with frequency- based feature vector. Based on the experimental results we analyzed the relation between the activity degree of the ERP and the band split characteristics of the ERP by wavelet transform.