• Title/Summary/Keyword: Feature Tracker

Search Result 51, Processing Time 0.026 seconds

Optical Head Tracker using Pattern Matching for Initial Attitude (초기자세 획득을 위한 패턴 매칭을 이용한 광학 방식 헤드 트랙커)

  • Kim, Young-Il;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.470-475
    • /
    • 2009
  • This paper is the study which is head tracker using pattern matching. Proposal algorithm obtains initial attitude of head tracker using pattern matching. Optical head tracker consists of infrared LEDs(features) which are attached helmet as pattern, stereo infrared cameras. Proposal algorithm analyzes patterns by error rate of feature distance and estimates feature characteristic number. Initial attitude of head tracker is obtained to compare map data and feature characteristic number.

A Hardware Implementation of Pyramidal KLT Feature Tracker (계층적 KLT 특징 추적기의 하드웨어 구현)

  • Kim, Hyun-Jin;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • This paper presents the hardware implementation of the pyramidal KLT(Kanade-Lucas-Tomasi) feature tracker. Because of its high computational complexity, it is not easy to implement a real-time KLT feature tracker using general-purpose processors. A hardware implementation of the pyramidal KLT feature tracker using FPGA(Field Programmable Gate Array) is described in this paper with emphasis on 1) adaptive adjustment of threshold in feature extraction under diverse lighting conditions, and 2) modification of the tracking algorithm to accomodate parallel processing and to overcome memory constraints such as capacity and bandwidth limitation. The effectiveness of the implementation was evaluated over ones produced by its software implementation. The throughput of the FPGA-based tracker was 30 frames/sec for video images with size of $720{\times}480$.

Simple Online Multiple Human Tracking based on LK Feature Tracker and Detection for Embedded Surveillance

  • Vu, Quang Dao;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.893-910
    • /
    • 2017
  • In this paper, we propose a simple online multiple object (human) tracking method, LKDeep (Lucas-Kanade feature and Detection based Simple Online Multiple Object Tracker), which can run in fast online enough on CPU core only with acceptable tracking performance for embedded surveillance purpose. The proposed LKDeep is a pragmatic hybrid approach which tracks multiple objects (humans) mainly based on LK features but is compensated by detection on periodic times or on necessity times. Compared to other state-of-the-art multiple object tracking methods based on 'Tracking-By-Detection (TBD)' approach, the proposed LKDeep is faster since it does not have to detect object on every frame and it utilizes simple association rule, but it shows a good object tracking performance. Through experiments in comparison with other multiple object tracking (MOT) methods using the public DPM detector among online state-of-the-art MOT methods reported in MOT challenge [1], it is shown that the proposed simple online MOT method, LKDeep runs faster but with good tracking performance for surveillance purpose. It is further observed through single object tracking (SOT) visual tracker benchmark experiment [2] that LKDeep with an optimized deep learning detector can run in online fast with comparable tracking performance to other state-of-the-art SOT methods.

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

Visual Tracking using Weighted Discriminative Correlation Filter

  • Song, Tae-Eun;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.49-57
    • /
    • 2016
  • In this paper, we propose the novel tracking method which uses the weighted discriminative correlation filter (DCF). We also propose the PSPR instead of conventional PSR as tracker performance evaluation method. The proposed tracking method uses multiple DCF to estimates the target position. In addition, our proposed method reflects more weights on the correlation response of the tracker which is expected to have more performance using PSPR. While existing multi-DCF-based tracker calculates the final correlation response by directly summing correlation responses from each tracker, the proposed method acquires the final correlation response by weighted combining of correlation responses from the selected trackers robust to given environment. Accordingly, the proposed method can provide high performance tracking in various and complex background compared to multi-DCF based tracker. Through a series of tracking experiments for various video data, the presented method showed better performance than a single feature-based tracker and also than a multi-DCF based tracker.

Sequence Images Registration by using KLT Feature Detection and Tracking (KLT특징점 검출 및 추적에 의한 비디오영상등록)

  • Ochirbat, Sukhee;Park, Sang-Eon;Shin, Sung-Woong;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Image registration is one of the critical techniques of image mosaic which has many applications such as generating panoramas, video monitoring, image rendering and reconstruction, etc. The fundamental tasks of image registration are point features extraction and tracking which take much computation time. KLT(Kanade-Lucas-Tomasi) feature tracker has proposed for extracting and tracking features through image sequences. The aim of this study is to demonstrate the usage of effective and robust KLT feature detector and tracker for an image registration using the sequence image frames captured by UAV video camera. In result, by using iterative implementation of the KLT tracker, the features extracted from the first frame of image sequences could be successfully tracked through all frames. The process of feature tracking in the various frames with rotation, translation and small scaling could be improved by a careful choice of the process condition and KLT pyramid implementation.

  • PDF

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

A vision based people tracking and following for mobile robots using CAMSHIFT and KLT feature tracker (캠시프트와 KLT특징 추적 알고리즘을 융합한 모바일 로봇의 영상기반 사람추적 및 추종)

  • Lee, S.J.;Won, Mooncheol
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.787-796
    • /
    • 2014
  • Many mobile robot navigation methods utilize laser scanners, ultrasonic sensors, vision camera, and so on for detecting obstacles and path following. However, human utilizes only vision(e.g. eye) information for navigation. In this paper, we study a mobile robot control method based on only the camera vision. The Gaussian Mixture Model and a shadow removal technology are used to divide the foreground and the background from the camera image. The mobile robot uses a combined CAMSHIFT and KLT feature tracker algorithms based on the information of the foreground to follow a person. The algorithm is verified by experiments where a person is tracked and followed by a robot in a hallway.

Speeding up the KLT Tracker for Realtime Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 KLT 트랙커의 속도개선)

  • Supannee, Tanathong;Lee, Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.77-80
    • /
    • 2010
  • The demand for human security significantly promotes the development of surveillance applications using a multi-sensor integrated UAV system. For more sophisticated operations, the system should provide a sequence of images rectified in a ground coordinate system in realtime. This rectification requires accurate position and attitude of the camera at the time of exposure of each image, which can be estimated through an Aerial Triangulation process using the GPS/INS data and tie points between adjacent images. In this work, the KLT tracker is utilized to obtain the tie points. To satisfy the realtime requirements, we present an approach to speed up the tracker by supplying the initial guessed positions of tie points based on the exterior orientation. The experimental results show that, when the guessed positions are supplied, the KLT tracker consumed less computational time than the ordinary KLT which is more suitable to be incorporated into the realtime image georeferencing process.

  • PDF

Head Tracker System Using Two Infrared Cameras (두 대의 적외선 카메라를 이용한 헤드 트랙커 시스템)

  • 홍석기;박찬국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, an experimental optical head tracker system is designed and constructed. The system is composed of the infrared LEDs and two infrared CCD cameras to filter out the interference of another light in the limited environment like the cockpit. Then the optical head tracker algorithm is designed by using the feature detection algorithm and the 3D motion estimation algorithm. The feature detection algorithm, used to obtain the 2D position coordinates of the features on the image plane, is implemented by using the thresholding and the masking techniques. The 3D motion estimation algorithm which estimates the motion of a pilot's head is implemented by using the extended Kalman filter (EKF). Also, we used the precise rate table to verify the performance of the experimental optical head tracker system and compared the rotational performance of this system with the inertial sensor.