• Title/Summary/Keyword: Feature Point Extraction

Search Result 268, Processing Time 0.032 seconds

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • Sin, Yeong Suk
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.10-10
    • /
    • 2003
  • This paper extracts the edge of main components of face with Gabor wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

The Recognition of Korean Character Using Preceding Layer Driven MLP (Preceding Layer Driven 다층 퍼셉트론을 이용한 한글문자 인식)

  • 백승엽;김동훈;정호선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.382-393
    • /
    • 1991
  • In this paper, we propose a method for recognizing printed Korean characters using the Preceding Layer Driven multi-layer perceptron. The new learning algorithm which assigns the weight values to an integer and makes use of the transfer function as the step function was presented to design the hardware. We obtained 522 Korean character-image as an experimental object through scanner with 600DPI resolution. The preprocessing for feature extraction of Korean character is the separation of individual character, noise elimination smoothing, thinnig, edge point extraction, branch point extraction, and stroke segmentation. The used feature data are the number of edge points and their shapes, the number of branch points, and the number of strokes with 8 directions.

  • PDF

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

3D feature point extraction technique using a mobile device (모바일 디바이스를 이용한 3차원 특징점 추출 기법)

  • Kim, Jin-Kyum;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.256-257
    • /
    • 2022
  • In this paper, we introduce a method of extracting three-dimensional feature points through the movement of a single mobile device. Using a monocular camera, a 2D image is acquired according to the camera movement and a baseline is estimated. Perform stereo matching based on feature points. A feature point and a descriptor are acquired, and the feature point is matched. Using the matched feature points, the disparity is calculated and a depth value is generated. The 3D feature point is updated according to the camera movement. Finally, the feature point is reset at the time of scene change by using scene change detection. Through the above process, an average of 73.5% of additional storage space can be secured in the key point database. By applying the algorithm proposed to the depth ground truth value of the TUM Dataset and the RGB image, it was confirmed that the\re was an average distance difference of 26.88mm compared with the 3D feature point result.

  • PDF

Classification of Feature Points Required for Multi-Frame Based Building Recognition (멀티 프레임 기반 건물 인식에 필요한 특징점 분류)

  • Park, Si-young;An, Ha-eun;Lee, Gyu-cheol;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.317-327
    • /
    • 2016
  • The extraction of significant feature points from a video is directly associated with the suggested method's function. In particular, the occlusion regions in trees or people, or feature points extracted from the background and not from objects such as the sky or mountains are insignificant and can become the cause of undermined matching or recognition function. This paper classifies the feature points required for building recognition by using multi-frames in order to improve the recognition function(algorithm). First, through SIFT(scale invariant feature transform), the primary feature points are extracted and the mismatching feature points are removed. To categorize the feature points in occlusion regions, RANSAC(random sample consensus) is applied. Since the classified feature points were acquired through the matching method, for one feature point there are multiple descriptors and therefore a process that compiles all of them is also suggested. Experiments have verified that the suggested method is competent in its algorithm.

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.

Study on 3 DoF Image and Video Stitching Using Sensed Data

  • Kim, Minwoo;Chun, Jonghoon;Kim, Sang-Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4527-4548
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from inertia sensors to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw, pitch, and roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data. In addition, the stitching accuracy of video data was improved using the same sensed data, with discrete calculation of homograph matrix. The experimental results for stitching accuracies and speed using sensed data are presented in this paper.

A Study on the Extraction of Linear Features from Satellite Images and Automatic GCP Filing (위성영상의 선형특징 추출과 이를 이용한 자동 GCP 화일링에 관한 연구)

  • 김정기;강치우;박래홍;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.2
    • /
    • pp.133-145
    • /
    • 1989
  • This paper describes an implementation of linear feature extraction algorithms for satellite images and a method of automatic GCP(Ground Control Point) filing using the extracted linear feature. We propose a new linear feature extraction algorithm which uses magnitude and direction information of edges. The result of applying the proposed algorithm to satellite images are presented and compared with those of the other algorithms. By using the proposed algorithm, automatic GCP filing was successfully performed.

CutPaste-Based Anomaly Detection Model using Multi Scale Feature Extraction in Time Series Streaming Data

  • Jeon, Byeong-Uk;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2787-2800
    • /
    • 2022
  • The aging society increases emergency situations of the elderly living alone and a variety of social crimes. In order to prevent them, techniques to detect emergency situations through voice are actively researched. This study proposes CutPaste-based anomaly detection model using multi-scale feature extraction in time series streaming data. In the proposed method, an audio file is converted into a spectrogram. In this way, it is possible to use an algorithm for image data, such as CNN. After that, mutli-scale feature extraction is applied. Three images drawn from Adaptive Pooling layer that has different-sized kernels are merged. In consideration of various types of anomaly, including point anomaly, contextual anomaly, and collective anomaly, the limitations of a conventional anomaly model are improved. Finally, CutPaste-based anomaly detection is conducted. Since the model is trained through self-supervised learning, it is possible to detect a diversity of emergency situations as anomaly without labeling. Therefore, the proposed model overcomes the limitations of a conventional model that classifies only labelled emergency situations. Also, the proposed model is evaluated to have better performance than a conventional anomaly detection model.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.