• Title/Summary/Keyword: Feature Mapping

Search Result 335, Processing Time 0.023 seconds

얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합 (A flexible Feature Matching for Automatic Face and Facial Feature Points Detection)

  • 박호식;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.705-711
    • /
    • 2003
  • 본 논문에서는 자동적으로 얼굴과 얼굴 특징점(FFPs:Facial Feature Points)을 검출하는 시스템을 제안하였다. 얼굴은 Gabor 특징에 의하여 지정된 특징점의 교점 그래프와 공간적 연결을 나타내는 에지 그래프로 표현하였으며 제안된 탄력적 특징 정합은 모델과 입력 영상에 상응하는 특징을 취하였다. 또한, 정합 모델은 국부적으로 경쟁적이고 전체적으로 협력적인 구조를 이룸으로서 영상공간에서 불규칙 확산 처리와 같은 역할을 하도록 하였으며, 복잡한 배경이나 자세의 변화, 그리고 왜곡된 얼굴 영상에서도 원활하게 동작하는 얼굴 식별 시스템을 구성함으로서 제안된 방법의 효율성을 증명하였다.

얼굴 특징점 자동 검출을 위한 탄력적 특징 정합 (A Flexible Feature Matching for Automatic Facial Feature Points Detection)

  • 황선기;배철수
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권2호
    • /
    • pp.12-17
    • /
    • 2010
  • 본 논문에서는 자동적으로 얼굴 특징점을 검출하는 시스템을 제안하였다. 얼굴은 Gabor 특징에 의하여 지정된 특징점의 교점 그래프와 공간적 연결을 나타내는 에지 그래프로 표현하였으며, 제안된 탄력적 특징 정합은 모델과 입력 영상에 상응하는 특징을 취하였다. 정합 모델은 국부적으로 경쟁적이고 전체적으로 협력적인 구조를 이룸으로서 영상공간에서 불규칙 확산 처리와 같은 역할을 하도록 하였다. 복잡한 배경이나 자세의 변화, 그리고 왜곡된 얼굴 영상에서도 원활하게 동작하는 얼굴 식별 시스템을 구성함으로서 제안된 방법의 효율성을 증명하였다.

  • PDF

얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합 (A Flexible Feature Matching for Automatic face and Facial feature Points Detection)

  • 박호식;손형경;정연길;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.608-612
    • /
    • 2002
  • 본 논문에서는 자동적으로 얼굴과 얼굴 특징점을 검출하는 시스템을 제안하였다. 얼굴은 Gabor 특징에 의하여 지정된 특징점의 교점 그래프와 공간적 연결을 나타내는 에지 그래프로 표현하였으며, 제안된 탄력적 특징 정합은 모델과 입력 영상에 상응하는 특징을 취하였다. 정합 모델은 국부적으로 경쟁적이고 전체적으로 협력적인 구조를 이룸으로서 영상공간에서 불규칙 확산 처리와 같은 역할을 하도록 하였다. 복잡한 배경이나 자세의 변화, 그리고 왜곡된 얼굴 영상에서도 원활하게 동작하는 얼굴 식별 시스템을 구성함으로서 제안된 방법의 효율성을 증명하였다.

  • PDF

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • 한국측량학회지
    • /
    • 제39권5호
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

가상현실에 적용을 위한 모델에 근거한 3차원 얼굴 모델링에 관한 연구 (Study of Model Based 3D Facial Modeling for Virtual Reality)

  • 한희철;권중장
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(3)
    • /
    • pp.193-196
    • /
    • 2000
  • In this paper, we present a model based 3d facial modeling method for virtual reality application using only one front of face photography. We extract facial feature using facial photography and modify mesh of the basic 3D model by the facial feature. After this , We use texture mapping for more similarity. By experiment, we know that the modeling technic is useful method for Movie, Virtual Reality Application, Game , Clothing Industry , 3D Video Conference.

  • PDF

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

GPU 가속화를 통한 이미지 특징점 기반 RGB-D 3차원 SLAM (Image Feature-Based Real-Time RGB-D 3D SLAM with GPU Acceleration)

  • 이동화;김형진;명현
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-461
    • /
    • 2013
  • This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.

블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법 (A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation)

  • 류항기;우경행;최원호;이재국
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

센서 융합을 통한 환경지도 기반의 강인한 전역 위치추정 (Robust Global Localization based on Environment map through Sensor Fusion)

  • 정민국;송재복
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.96-103
    • /
    • 2014
  • Global localization is one of the essential issues for mobile robot navigation. In this study, an indoor global localization method is proposed which uses a Kinect sensor and a monocular upward-looking camera. The proposed method generates an environment map which consists of a grid map, a ceiling feature map from the upward-looking camera, and a spatial feature map obtained from the Kinect sensor. The method selects robot pose candidates using the spatial feature map and updates sample poses by particle filter based on the grid map. Localization success is determined by calculating the matching error from the ceiling feature map. In various experiments, the proposed method achieved a position accuracy of 0.12m and a position update speed of 10.4s, which is robust enough for real-world applications.

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.