• Title/Summary/Keyword: Feature Management

Search Result 1,185, Processing Time 0.025 seconds

FEATURE-BASED SPATIAL DATA MODELING FOR SEAMLESS MAP, HISTORY MANAGEMENT AND REAL-TIME UPDATING

  • Kim, Hyeong-Soo;Kim, Sang-Yeob;Seo, Sung-Bo;Kim, Hi-Seok;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.433-436
    • /
    • 2008
  • A demand on the spatial data management has been rapidly increased with the introduction and diffusion process of ITS, Telematics, and Wireless Sensor Network, and many different people use the digital map that offers various thematic spatial data. Spatial data for digital map can manage to tile-based and feature-based data. The existing tile-based digital map management systems have difficult problems of data construction, history management, and updating based on a spatial object. In order to solve these problems, this paper proposed the data model for the feature-based digital map management system that is designed for feature-based seamless map, history management, real-time updating of spatial data, and analyzed the validity and utility of the proposed model.

  • PDF

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

Short Note on Optimizing Feature Selection to Improve Medical Diagnosis

  • Guo, Cui;Ryoo, Hong Seo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.71-74
    • /
    • 2014
  • A new classification framework called 'support feature machine' was introduced in [2] for analyzing medical data. Contrary to authors' claim, however, the proposed method is not designed to guarantee minimizing the use of the spatial feature variables. This paper mathematically remedies this drawback and provides comments on models from [2].

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

General Set Covering for Feature Selection in Data Mining

  • Ma, Zhengyu;Ryoo, Hong Seo
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • Set covering has widely been accepted as a staple tool for feature selection in data mining. We present a generalized version of this classical combinatorial optimization model to make it better suited for the purpose and propose a surrogate relaxation-based procedure for its meta-heuristic solution. Mathematically and also numerically with experiments on 25 set covering instances, we demonstrate the utility of the proposed model and the proposed solution method.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

Classification of High Dimensionality Data through Feature Selection Using Markov Blanket

  • Lee, Junghye;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.210-219
    • /
    • 2015
  • A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.

Set Covering-based Feature Selection of Large-scale Omics Data (Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법)

  • Ma, Zhengyu;Yan, Kedong;Kim, Kwangsoo;Ryoo, Hong Seo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

Method to Construct Feature Functions of C-CRF Using Regression Tree Analysis (회귀나무 분석을 이용한 C-CRF의 특징함수 구성 방법)

  • Ahn, Gil Seung;Hur, Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.338-343
    • /
    • 2015
  • We suggest a method to configure feature functions of continuous conditional random field (C-CRF). Regression tree and similarity analysis are introduced to construct the first and second feature functions of C-CRF, respectively. Rules from the regression tree are transformed to logic functions. If a logic in the set of rules is true for a data then it returns the corresponding value of leaf node and zero, otherwise. We build an Euclidean similarity matrix to define neighborhood, which constitute the second feature function. Using two feature functions, we make a C-CRF model and an illustrate example is provided.

Study on establish for unit of measure for Quality Feature (품질 특성의 측정에 대한 연구)

  • Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.356-363
    • /
    • 2010
  • In this Paper, We study on establish for unit of measure. Quality means abstract for customer needs. we surveyed unit of measurement of quality feature of Juran, Taguchi, 6 sigma method. We suggest unit of measurement of quality feature. Each enterprise can use defining own unit of measurement of quality feature. Effect is expected in enterprise that these proposals do quality control. There is meaning in direction that measuring mean of quality feature that propose in this treatise understands actuality to be deeply and reconcile exact point of theory.

  • PDF