• Title/Summary/Keyword: Feature Extraction and Recognition

Search Result 821, Processing Time 0.142 seconds

Global Feature Extraction and Recognition from Matrices of Gabor Feature Faces

  • Odoyo, Wilfred O.;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.207-211
    • /
    • 2011
  • This paper presents a method for facial feature representation and recognition from the Covariance Matrices of the Gabor-filtered images. Gabor filters are a very powerful tool for processing images that respond to different local orientations and wave numbers around points of interest, especially on the local features on the face. This is a very unique attribute needed to extract special features around the facial components like eyebrows, eyes, mouth and nose. The Covariance matrices computed on Gabor filtered faces are adopted as the feature representation for face recognition. Geodesic distance measure is used as a matching measure and is preferred for its global consistency over other methods. Geodesic measure takes into consideration the position of the data points in addition to the geometric structure of given face images. The proposed method is invariant and robust under rotation, pose, or boundary distortion. Tests run on random images and also on publicly available JAFFE and FRAV3D face recognition databases provide impressively high percentage of recognition.

Facial Feature Extraction using Nasal Masks from 3D Face Image (코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • This paper proposes a new method for facial feature extraction, and the method could be used to normalize face images for 3D face recognition. 3D images are much less sensitive than intensity images at a source of illumination, so it is possible to recognize people individually. But input face images may have variable poses such as rotating, Panning, and tilting. If these variances ire not considered, incorrect features could be extracted. And then, face recognition system result in bad matching. So it is necessary to normalize an input image in size and orientation. It is general to use geometrical facial features such as nose, eyes, and mouth in face image normalization steps. In particular, nose is the most prominent feature in 3D face image. So this paper describes a nose feature extraction method using 3D nasal masks that are similar to real nasal shape.

3-D Object Recognition Using a Feature Extraction Scheme: Open-Ball Operator (Open-Ball 피처 추출 방법에 의한 3차원 물체 인식)

  • Kim, Sung-Soo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.821-831
    • /
    • 1999
  • Recognition of three-dimensional objects with convexities and concavities is a hard and challenging problem. This paper presents a feature extraction method out of three-dimensional objects for the purpose of classification. This new method not only provides invariance to scale, translation, and rotation $R^3$ but also distinguishes any three-dimensional model objects with concavities and convexities by measuring a relative similarity in the information space where a set of characteristics features of objects is mapped.

  • PDF

Recognition of Control Chart Pattern using Bi-Directional Kohonen Network and Artificial Neural Network (Bi-Directional Kohonen Network와 인공신경망을 사용한 관리도 패턴 인식)

  • Yun, Jae-Jun;Park, Cheong-Sool;Kim, Jun-Seok;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.115-125
    • /
    • 2011
  • Manufacturing companies usually manage the process to achieve high quality using various types of control chart in statistical process control. When an assignable cause occurs in a process, the data in the control chart changes with different patterns by the specific causes. It is important in process control to classify the CCP (Control Chart Pattern) recognition for fast decision making. In former research, gathered data from process used to apply as raw data, leads to degrade the performance of recognizer and to decrease the learning speed. Therefore, feature based recognizer, employing feature extraction method, has been studied to enhance the classification accuracy and to reduce the dimension of data. We propose the method to extract features that take the distances between CCP data and reference vector generated from BDK (Bi-Directional Kohonen Network). We utilize those features as the input vectors in ANN (Artificial Neural Network) and compare with raw data applied ANN to evaluate the performance.

Lip Feature Extraction using Contrast of YCbCr (YCbCr 농도 대비를 이용한 입술특징 추출)

  • Kim, Woo-Sung;Min, Kyung-Won;Ko, Han-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.259-260
    • /
    • 2006
  • Since audio speech recognition is affected by noise in real environment, visual speech recognition is used to support speech recognition. For the visual speech recognition, this paper suggests the extraction of lip-feature using two types of image segmentation and reduced ASM. Input images are transformed to YCbCr based images and lips are segmented using the contrast of Y/Cb/Cr between lip and face. Subsequently, lip-shape model trained by PCA is placed on segmented lip region and then lip features are extracted using ASM.

  • PDF

Elongated Radial Basis Function for Nonlinear Representation of Face Data

  • Kim, Sang-Ki;Yu, Sun-Jin;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.428-434
    • /
    • 2011
  • Recently, subspace analysis has raised its performance to a higher level through the adoption of kernel-based nonlinearity. Especially, the radial basis function, based on its nonparametric nature, has shown promising results in face recognition. However, due to the endemic small sample size problem of face data, the conventional kernel-based feature extraction methods have difficulty in data representation. In this paper, we introduce a novel variant of the RBF kernel to alleviate this problem. By adopting the concept of the nearest feature line classifier, we show both effectiveness and generalizability of the proposed method, particularly regarding the small sample size issue.

The Recognition of Grapheme 'ㅁ', 'ㅇ' Using Neighbor Angle Histogram and Modified Hausdorff Distance (이웃 각도 히스토그램 및 변형된 하우스도르프 거리를 이용한 'ㅁ', 'ㅇ' 자소 인식)

  • Chang Won-Du;Kim Ha-Young;Cha Eui-Young;Kim Do-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.181-191
    • /
    • 2005
  • The classification error of 'ㅁ', 'ㅇ' is one of the main causes of incorrect recognition in Korean characters, but there haven't been enough researches to solve this problem. In this paper, a new feature extraction method from Korean grapheme is proposed to recognize 'ㅁ', 'ㅇ'effectively. First, we defined an optimal neighbor-distance selection measure using modified Hausdorff distance, which we determined the optimal neighbor-distance by. And we extracted neighbor-angle feature which was used as the effective feature to classify the two graphemes 'ㅁ', 'ㅇ'. Experimental results show that the proposed feature extraction method worked efficiently with the small number of features and could recognize the untrained patterns better than the conventional methods. It proves that the proposed method has a generality and stability for pattern recognition.

  • PDF

A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction (한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구)

  • ;Jeong, Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.46-63
    • /
    • 1995
  • This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.

  • PDF

SoC Implementation of Fingerprint Feature Extraction System with Ridge Following (융선추적을 이용한 지문 특징점 추출기의 SoC 구현)

  • 김기철;박덕수;정용화;반성범
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.97-107
    • /
    • 2004
  • This paper presents an System-on-Chip(SoC) implementation of fingerprint feature extraction system. Typical fingerprint feature extraction systems employ binarization and thinning processes which cause many extraction errors for low qualify fingerprint images and degrade the accuracy of the entire fingerprint recognition system. To solve these problems, an algorithm directly following ridgelines without the binarization and thinning process has been proposed. However, the computational requirement of the algorithm makes it hard to implement it on SoCs by using software only. This paper presents an implementation of the ridge-following algorithm onto SoCs. The algorithm has been modified to increase the efficiency of hardwares. Each function block of the algorithm has been implemented in hardware or in software by considering its computational complexity, cost and utilization of the hardware, and efficiency of the entire system. The fingerprint feature extraction system has been developed as an IP for SoCs, hence it can be used on many kinds of SoCs for smart cards.

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.