• Title/Summary/Keyword: Feature Extraction and Recognition

Search Result 821, Processing Time 0.025 seconds

The Application of SVD for Feature Extraction (특징추출을 위한 특이값 분할법의 응용)

  • Lee Hyun-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.82-86
    • /
    • 2006
  • The design of a pattern recognition system generally involves the three aspects: preprocessing, feature extraction, and decision making. Among them, a feature extraction method determines an appropriate subspace of dimensionality in the original feature space of dimensionality so that it can reduce the complexity of the system and help to improve successful recognition rates. Linear transforms, such as principal component analysis, factor analysis, and linear discriminant analysis have been widely used in pattern recognition for feature extraction. This paper shows that singular value decomposition (SVD) can be applied usefully in feature extraction stage of pattern recognition. As an application, a remote sensing problem is applied to verify the usefulness of SVD. The experimental result indicates that the feature extraction using SVD can improve the recognition rate about 25% compared with that of PCA.

Feature Extraction Method for the Character Recognition of the Low Resolution Document

  • Kim, Dae-Hak;Cheong, Hyoung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.525-533
    • /
    • 2003
  • In this paper we introduce some existing preprocessing algorithm for character recognition and consider feature extraction method for the recognition of low resolution document. Image recognition of low resolution document including fax images can be frequently misclassified due to the blurring effect, slope effect, noise and so on. In order to overcome these difficulties in the character recognition we considered a mesh feature extraction and contour direction code feature. System for automatic character recognition were suggested.

  • PDF

Emotion recognition from speech using Gammatone auditory filterbank

  • Le, Ba-Vui;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF

Feature-based Extraction of Machining Features (특징형상 접근방법에 의한 가공특징형상 추출)

  • 이재열;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.139-152
    • /
    • 1999
  • This paper presents a feature-based approach to extracting machining features fro a feature-based design model. In the approach, a design feature to machining feature conversion process incrementally converts each added design feature into a machining feature or a set of machining features. The proposed approach an efficiently handle protrusion features and interacting features since it takes advantage of design feature information, design intent, and functional requirements during feature extraction. Protrusion features cannot be directly mapped into machining features so that the removal volumes surrounding protrusion features are extracted and converted it no machining features. By utilizing feature information as well as geometry information during feature extraction, the proposed approach can easily overcome inherent problems relating to feature recognition such as feature interactions and loss of design intent. In addition, a feature extraction process can be simplified, and a large set of complex part can be handled with ease.

  • PDF

Effective Feature Extraction in the Individual frequency Sub-bands for Speech Recognition (음성인식을 위한 주파수 부대역별 효과적인 특징추출)

  • 지상문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.598-603
    • /
    • 2003
  • This paper presents a sub-band feature extraction approach in which the feature extraction method in the individual frequency sub-bands is determined in terms of speech recognition accuracy. As in the multi-band paradigm, features are extracted independently in frequency sub-regions of the speech signal. Since the spectral shape is well structured in the low frequency region, the all pole model is effective for feature extraction. But, in the high frequency region, the nonparametric transform, discrete cosine transform is effective for the extraction of cepstrum. Using the sub-band specific feature extraction method, the linguistic information in the individual frequency sub-bands can be extracted effectively for automatic speech recognition. The validity of the proposed method is shown by comparing the results of speech recognition experiments for our method with those obtained using a full-band feature extraction method.

Emotion Recognition of Facial Expression using the Hybrid Feature Extraction (혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식)

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

3D Data Dimension Reduction for Efficient Feature Extraction in Posture Recognition (포즈 인식에서 효율적 특징 추출을 위한 3차원 데이터의 차원 축소)

  • Kyoung, Dong-Wuk;Lee, Yun-Li;Jung, Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.435-448
    • /
    • 2008
  • 3D posture recognition is a solution to overcome the limitation of 2D posture recognition. There are many researches carried out for 3D posture recognition using 3D data. The 3D data consist of massive surface points which are rich of information. However, it is difficult to extract the important features for posture recognition purpose. Meanwhile, it also consumes lots of processing time. In this paper, we introduced a dimension reduction method that transform 3D surface points of an object to 2D data representation in order to overcome the issues of feature extraction and time complexity of 3D posture recognition. For a better feature extraction and matching process, a cylindrical boundary is introduced in meshless parameterization, its offer a fast processing speed of dimension reduction process and the output result is applicable for recognition purpose. The proposed approach is applied to hand and human posture recognition in order to verify the efficiency of the feature extraction.

Hybrid-Feature Extraction for the Facial Emotion Recognition

  • Byun, Kwang-Sub;Park, Chang-Hyun;Sim, Kwee-Bo;Jeong, In-Cheol;Ham, Ho-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1281-1285
    • /
    • 2004
  • There are numerous emotions in the human world. Human expresses and recognizes their emotion using various channels. The example is an eye, nose and mouse. Particularly, in the emotion recognition from facial expression they can perform the very flexible and robust emotion recognition because of utilization of various channels. Hybrid-feature extraction algorithm is based on this human process. It uses the geometrical feature extraction and the color distributed histogram. And then, through the independently parallel learning of the neural-network, input emotion is classified. Also, for the natural classification of the emotion, advancing two-dimensional emotion space is introduced and used in this paper. Advancing twodimensional emotion space performs a flexible and smooth classification of emotion.

  • PDF