• 제목/요약/키워드: Feature Extraction Ensemble

검색결과 19건 처리시간 0.025초

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.41-51
    • /
    • 2023
  • 본 논문에서는 보행자의 걸음걸이로부터 분노 감정 검출을 위한 다중 시간 윈도 특징 추출 기술을 제안한다. 기존의 걸음걸이 기반 감정인식 기술에서는 보행자의 보폭, 한 보폭에 걸리는 시간, 보행 속력, 목과 흉부의 전방 기울기 각도(Forward Tilt Angle)를 계산하고, 전체 구간에 대해서 최솟값, 평균값, 최댓값을 계산해서 이를 특징으로 활용하였다. 하지만 이때 각 특징은 보행 전체 구간에 걸쳐 항상 균일하게 변화가 발생하는 것이 아니라, 때로는 지역적으로 변화가 발생한다. 이에 본 연구에서는 장기부터 중기 그리고 단기까지 즉, 전역적인 특징과 지역적인 특징을 모두 추출할 수 있는 다중 시간 윈도 특징 추출(Multi-Time Window Feature Extraction) 기술을 제안한다. 또한, 제안하는 특징 추출 기술을 통해 각 구간에서 추출된 특징들을 효과적으로 학습할 수 있는 앙상블 모델을 제안한다. 제안하는 앙상블 모델(Ensemble Model)은 복수의 분류기로 구성되며, 각 분류기는 서로 다른 다중 시간 윈도에서 추출된 특징으로 학습된다. 제안하는 특징 추출 기술과 앙상블 모델의 효과를 검증하기 위해 일반인에게 공개된 3차원 걸음걸이 데이터 세트를 사용하여 시험 평가를 수행했다. 그 결과, 4가지 성능 평가지표에 대해서 제안하는 앙상블 모델이 기존의 특징 추출 기술로 학습된 머신러닝(Machine Learning) 모델들과 비교하여 최고의 성능을 달성하는 것을 입증하였다.

PCA-CIA Ensemble-based Feature Extraction for Bio-Key Generation

  • Kim, Aeyoung;Wang, Changda;Seo, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2919-2937
    • /
    • 2020
  • Post-Quantum Cryptography (PQC) is rapidly developing as a stable and reliable quantum-resistant form of cryptography, throughout the industry. Similarly to existing cryptography, however, it does not prevent a third-party from using the secret key when third party obtains the secret key by deception, unauthorized sharing, or unauthorized proxying. The most effective alternative to preventing such illegal use is the utilization of biometrics during the generation of the secret key. In this paper, we propose a biometric-based secret key generation scheme for multivariate quadratic signature schemes, such as Rainbow. This prevents the secret key from being used by an unauthorized third party through biometric recognition. It also generates a shorter secret key by applying Principal Component Analysis (PCA)-based Confidence Interval Analysis (CIA) as a feature extraction method. This scheme's optimized implementation performed well at high speeds.

Sequence driven features for prediction of subcellular localization of proteins

  • Kim, Jong-Kyoung;Bang, Sung-Yang;Choi, Seung-Jin
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.237-242
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives a valuable information for inferring the possible function of the protein. For more accurate prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper, we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting. The overall prediction accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful for predicting subcellular localization of proteins.

  • PDF

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

단백질의 세포내 소 기관별 분포 예측을 위한 서열 기반의 특징 추출 방법 (Sequence driven features for prediction of subcellular localization of proteins)

  • 김종경;최승진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.226-228
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives valuable information for inferring the possible function of the protein. For more accurate Prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting . The overall prediction accuracy evaluated by the 5-fold cross-validation reached $88.53\%$ for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful forpredicting subcellular localization of proteins.

  • PDF

대용량 악성코드의 특징 추출 가속화를 위한 분산 처리 시스템 설계 및 구현 (Distributed Processing System Design and Implementation for Feature Extraction from Large-Scale Malicious Code)

  • 이현종;어성율;황두성
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권2호
    • /
    • pp.35-40
    • /
    • 2019
  • 기존 악성코드 탐지는 다형성 또는 난독화 기법이 적용된 변종 악성코드 탐지에 취약하다. 기계학습 알고리즘은 악성코드에 내재된 패턴을 학습시켜 유사 행위 탐지가 가능해 기존 탐지 방법을 대체할 수 있다. 시간에 따라 변화하는 악성코드 패턴을 학습시키기 위해 지속적으로 데이터를 수집해야한다. 그러나 대용량 악성코드 파일의 저장 및 처리 과정은 높은 공간과 시간 복잡도가 수반된다. 이 논문에서는 공간 복잡도를 완화하고 처리 시간을 가속화하기 위해 HDFS 기반 분산 처리 시스템을 설계한다. 분산 처리 시스템을 이용해 2-gram 특징과 필터링 기준에 따른 API 특징 2개, APICFG 특징을 추출하고 앙상블 학습 모델의 일반화 성능을 비교했다. 실험 결과로 특징 추출의 시간 복잡도는 컴퓨터 한 대의 처리 시간과 비교했을 때 약 3.75배 속도가 개선되었으며, 공간 복잡도는 약 5배의 효율성을 보였다. 특징 별 분류 성능을 비교했을 때 2-gram 특징이 가장 우수했으나 훈련 데이터 차원이 높아 학습 시간이 오래 소요되었다.

컬러 영상 색채 강도 엔트로피를 이용한 앙상블 모델 기반의 지능형 나비 영상 인식 (Ensemble Model Based Intelligent Butterfly Image Identification Using Color Intensity Entropy)

  • 김태희;강승호
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.972-980
    • /
    • 2022
  • 영상을 이용한 기계학습 기반의 나비 종 인식 기술은 나비 종의 다양성 및 개체 수, 종의 서식 분포 등을 파악하는데 관련 분야 종사자의 많은 시간과 비용 감소의 효과를 가져온다. 나비 종 분류의 정확성과 시간 효율을 높이기 위해 기계학습 모델의 입력으로 사용되는 여러 가지 특징들이 연구되었다. 그중 엔트로피 개념을 이용한 가지 길이 유사성 엔트로피나 색채 강도 엔트로피 방법이 푸리에 변환이나 웨이블릿 등 다른 특징들에 비해 높은 정확성과 적은 학습 시간을 보여주었다. 본 논문은 나비의 컬러 영상에 대한 RGB 색채 강도 엔트로피를 이용한 특징 추출 알고리즘을 제안한다. 또한 제안한 특징 추출 방법과 대표적인 앙상블 모델들을 결합한 나비 인식 시스템을 개발하고 성능을 평가한다.

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

안드로이드 기반 앱 악성코드 탐지를 위한 Feature 선정 및 학습모델 제안 (Suggestion of Selecting features and learning models for Android-based App Malware Detection)

  • 배세진;이정수;백남균
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.377-380
    • /
    • 2022
  • 앱(App)이라 불리는 응용프로그램은 모바일 기기 등에 다운받아 사용 가능하다. 그 중 안드로이드(Android) 기반 앱은 오픈소스 기반으로 구현되어 누구나 악용 가능하다는 단점이 있지만, 아주 일부분의 소스코드를 공개하는 iOS와는 달리 안드로이드는 오픈소스로 구현되어있기 때문에 코드를 분석할 수 있다는 장점도 있다. 하지만, 오픈소스 기반의 안드로이드 앱은 누구나 소스코드 변경에 참여 가능하기 때문에 그만큼 악성코드가 많아지고 종류 또한 다양해질 수밖에 없다. 단기간에 기하급수적으로 늘어나는 악성코드는 사람이 일일이 탐지하기 어려워 AI를 활용하여 악성코드를 탐지하는 기법을 사용하는 것이 효율적이다. 기존 대부분의 악성 앱 탐지 방안은 Feature를 추출하여 악성 앱을 탐지하는 방안이 대부분이다. 따라서 Feature 추출 후 학습에 사용할 최적의 Feature를 선정(Selection)하는 3가지 방안을 제안한다. 마지막으로, 최적의 Feature로 모델링을 하는 단계에서 단일 모델 이외에도 앙상블 기법을 사용한다. 앙상블 기법은 이미 여러 연구에서 나와 있듯이 단일 모델의 성능을 뛰어넘는 결과를 보여주고 있다. 따라서 본 논문에서는 안드로이드 앱(App) 기반 악성코드 탐지 최적의 Feature 선정과 학습모델을 구현하는 방안을 제시한다.

  • PDF