In most boundary estimation algorithms estimation in EIT (Electrical Impedance Tomography), anomaly boundaries can be expressed with Fourier series and the unknown coefficients are estimated with proper inverse algorithms. Furthermore, the number of anomalies is assumed to be available a priori. The prior knowledge on the number of anomalies may be unavailable in some cases, and we need to determine the number of anomalies with other methods. This paper presents an algorithm for the boundary estimation in EIT (Electrical Impedance Tomography) using the prior information from the conventional Newton-Raphson method. Although Newton-Raphson method generates so poor spatial resolution that the anomaly boundaries are hardly reconstructed, even after a few iterations it can give general feature of the object to be imaged such as the number of anomalies, their sizes and locations, as long as the anomalies are big enough. Some numerical experiments indicate that the Newton-Raphson method can be used as a good predictor of the unknown boundaries and the proposed boundary discrimination algorithm has a good performance.
This paper presents a novel diagnostic technique for monitoring the system conditions and detecting failure modes and precursors based on wavelet-packet analysis of external noise/vibration measurements. The capability is based on extracting relevant features of noise/vibration data that best discriminate systems with different noise/vibration signatures by analyzing external measurements of noise/vibration in the time-frequency domain. By virtue of their localized nature both in time and frequency, the identified features help to reveal faults at the level of components in a mechanical system in addition to the existence of certain faults. A prima-facie case is made via application of the proposed approach to fault detection in scroll and rotary compressors, although the methods and algorithms are very general in nature. The proposed technique has successfully identified the existence of specific faults in the scroll and rotary compressors. In addition, its capability of tracking the severity of specific faults in the rotary compressors indicates that the technique has a potential to be used as a prognostic tool.
Kim, In-Young;Lee, Sun-Ho;Kim, Sang-Cheol;Rha, Sun-Young;Chung, Hyun-Cheol;Kim, Byung-Soo
한국생물정보학회:학술대회논문집
/
한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
/
pp.101-106
/
2003
In this paper, we propose using Hotelling's T2 statistic for the detection of a set of a set of differentially expressed (DE) genes in colorectal cancer based on its gene expression level in tumor tissues compared with those in normal tissues and to evaluate its predictivity which let us rank genes for the development of biomarkers for population screening of colorectal cancer. We compared the prediction rate based on the DE genes selected by Hotelling's T2 statistic and univariate t statistic using various prediction methods, a regulized discrimination analysis and a support vector machine. The result shows that the prediction rate based on T2 is better than that of univatiate t. This implies that it may not be sufficient to look at each gene in a separate universe and that evaluating combinations of genes reveals interesting information that will not be discovered otherwise.
In this study, the feasibility of magnetic resonance techniques for nondestructive internal quality evaluation of Korean red ginseng was examined. Relaxation time constants were measured using various grades of red ginsengs. Solid state magnetic resonance imaging technique was applied to image dried red ginsengs which have low moisture contents (about 13%). A 7 tesla magnetic resonance imaging system operating at a proton resonant frequency of 300 ㎒ was used for acquiring MR images of dried Korean red ginseng. The comparison test of cross cut digital images and magnetic resonance images of heaven grade, good grade with cavity inside, and good grade with white part inside red ginseng suggested the feasibility of the internal quality evaluation of Korean red ginsengs using MRI techniques. A good grade red ginseng included abnormal tissues such as cavities or white parts inside was observed by the signal intensity of MR image based on magnetic resonance properties of proton nucleus. Analysis on an one dimensional profile of acquired MR image of Korean red ginseng showed easy discrimination of normal and abnormal tissues. MR techniques suggested ways to detect internal defects of red ginsengs effectively.
Although atypical sensory processing is a core feature of autism spectrum disorder (ASD), there is considerable heterogeneity among ASD individuals in the modality and symptoms of atypical sensory processing. The present study examined visual processing of children with ASD, focusing on the complexity and orientation of visual information. Age- and -IQ-matched Korean children (14 ASD and 14 typically-developing (TD) children) received an orientation discrimination task involving static spatial gratings varied in complexity (simple versus complex) and orientation (horizontal versus vertical). The results revealed that ASD children had difficulty perceiving complex information regardless of orientation, whereas TD children had more difficulty with vertical gratings than horizontal gratings. Thus, group-level differences between ASD and TD children appeared greater when gratings were presented horizontally. Unlike ASD adult literature, however, ASD children did not show superior performance on simple gratings. Our findings on typical and atypical processing of ASD children have implications for both understanding the characteristics of ASD children and developing diagnostic tools for ASD.
본 논문에서는 영상 처리를 이용하여 차체의 진동에 영향을 미치는 자동차 T-Bar부품에서의 볼트와 너트의 존재 유무를 판별하는 알고리즘이 소개된다. T-Bar의 볼트와 너트 존재 유무를 판별하기 위하여 볼트와 너트의 특징치들이 학습되고 통계적 패턴매칭 방법을 이용하여 학습된 특징치들이 매칭된다. 또한 영상마다 볼트와 너트들의 화소값이 크게 변화하여 매칭율이 낮아지기 때문에 화소값의 최대와 최소 변화률이 이용된다. 본 논문에서 제안한 방법은 기존의 방법들에 비해 검사시간을 대폭 축소시켜 실시간이 요구되는 검사 자동화 분야에 아주 효율적이다.
The objective of this study is to extract information from electroencephalogram(EEG) signals with which we can discriminate mental states. Seven university students were participated in this study. Ten stimuli based on IAPS (International Affective Picture Systems) Were presented at random according to the experimental schedule. 8-channel ($O_1$, $O_2$, $F_3$, $F_4$, $F_7$, $F_8$, $FP_1$, and $FP_2$)EEG signals were recorded at a sampling rate of 204.8 Hz for visual stimuli and analyzed. After random ten sequential stimuli presentation, the subject subjectively assessed the stimulus by scaling from -5 to 5. If the stimulus was the best and the worst, it was scored 5 and -5, respectively. Only maximum and minimum scored-EEG signals within each subject were selected on the basis of subjectively assessment for analysis. EEG signals were transformed into feature objects based on scalar autoregressive model coefficients. They were classified with Discriminant Analysis for each channel. The features produced results with the best classification accuracy of 85.7 % in $O_1$ and $O_2$ for visual stimuli. This study could be extended to establish an algorithm which quantify and classify emotions evoked by visual stimulus using autoregressive models.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권6호
/
pp.2612-2633
/
2020
Due to the explosive growth of multimedia speech data, how to protect the privacy of speech data and how to efficiently retrieve speech data have become a hot spot for researchers in recent years. In this paper, we proposed an encrypted speech retrieval scheme based on long short-term memory (LSTM) neural network and deep hashing. This scheme not only achieves efficient retrieval of massive speech in cloud environment, but also effectively avoids the risk of sensitive information leakage. Firstly, a novel speech encryption algorithm based on 4D quadratic autonomous hyperchaotic system is proposed to realize the privacy and security of speech data in the cloud. Secondly, the integrated LSTM network model and deep hashing algorithm are used to extract high-level features of speech data. It is used to solve the high dimensional and temporality problems of speech data, and increase the retrieval efficiency and retrieval accuracy of the proposed scheme. Finally, the normalized Hamming distance algorithm is used to achieve matching. Compared with the existing algorithms, the proposed scheme has good discrimination and robustness and it has high recall, precision and retrieval efficiency under various content preserving operations. Meanwhile, the proposed speech encryption algorithm has high key space and can effectively resist exhaustive attacks.
In the present study, we investigated ability of recognition of auditory perception with regards to the quality of voice in postlingual CI adults and proposed a training program to improve within subject reliability. A prospective case-control study was conducted in adults with 7 postlingual deaf who received a CI surgery and 10 normal hearing controls. The pre and post test and training program included parameters of consensus auditory-perceptual evaluation of voice(CAPE-V) with pathological voice sample by using Alvin. In results of pre-post test for monitoring improvements of internal reliability for listeners via the training program, there was statistically significant difference in both test and group. There was statistically significant difference in internal reliability between pre-post test in the normal hearing group, the result was no significant in the CI group. The present study found that CI adults showed less ability in awareness of voice quality compared to normal hearing group. Also the training program improved pitch and loudness in CI adults.
본 논문에서는 집적 영상의 획득과 복원을 이용하여 왜곡에 강인한 물체를 인식하는 방법을 연구한다. 해당 화소들의 확률적 특성인 평균과 표준편차를 이용하여 3차원 공간에서 물체를 복원하고 거리를 추정한다. 표적인식은 Fisher 선형판별법(linear discriminant analysis, LDA)과 주성분 분석법(principal component analysis, PCA) 기술을 결합한 통계적 분류기(statistical classifier)로 수행한다. Fisher 선형판별법은 클래스 간의 판별력을 최대로 하고 주성분 분석법은 Fisher 선형판별법을 수행하기 위한 차원축소를 실행한다. 주성분 분석법은 차원축소 후 복원된 벡터와 원 벡터의 오차를 최소화하는 기술로 알려져 있다. 실험 및 시뮬레이션을 통하여 면외(out-of-plane) 회전된 표적을 본 논문에서 제안한 방법으로 분류한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.