• Title/Summary/Keyword: Feature Description

Search Result 181, Processing Time 0.029 seconds

The Effects of Human Resource Factors on Firm Efficiency: A Bayesian Stochastic Frontier Analysis

  • Shin, Sangwoo;Chang, Hyejung
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.292-302
    • /
    • 2018
  • This study proposes a Bayesian stochastic frontier model that is well-suited to productivity/efficiency analysis particularly using panel data. A unique feature of our proposal is that both production frontier and efficiency are estimable for each individual firm and their linkage to various firm characteristics enriches our understanding of the source of productivity/efficiency. Empirical application of the proposed analysis to Human Capital Corporate Panel data enables identification and quantification of the effects of Human Resource factors on firm efficiency in tandem with those of firm types on production frontier. A comprehensive description of the Markov Chain Monte Carlo estimation procedure is forwarded to facilitate the use of our proposed stochastic frontier analysis.

A Three-scale Pedestrian Detection Method based on Refinement Module (Refinement Module 기반 Three-Scale 보행자 검출 기법)

  • Kyungmin Jung;Sooyong Park;Hyun Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.259-265
    • /
    • 2023
  • Pedestrian detection is used to effectively detect pedestrians in various situations based on deep learning. Pedestrian detection has difficulty detecting pedestrians due to problems such as camera performance, pedestrian description, height, and occlusion. Even in the same pedestrian, performance in detecting them can differ according to the height of the pedestrian. The height of general pedestrians encompasses various scales, such as those of infants, adolescents, and adults, so when the model is applied to one group, the extraction of data becomes inaccurate. Therefore, this study proposed a pedestrian detection method that fine-tunes the pedestrian area by Refining Layer and Feature Concatenation to consider various heights of pedestrians. Through this, the score and location value for the pedestrian area were finely adjusted. Experiments on four types of test data demonstrate that the proposed model achieves 2-5% higher average precision (AP) compared to Faster R-CNN and DRPN.

BoF based Action Recognition using Spatio-Temporal 2D Descriptor (시공간 2D 특징 설명자를 사용한 BOF 방식의 동작인식)

  • KIM, JinOk
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.21-32
    • /
    • 2015
  • Since spatio-temporal local features for video representation have become an important issue of modeless bottom-up approaches in action recognition, various methods for feature extraction and description have been proposed in many papers. In particular, BoF(bag of features) has been promised coherent recognition results. The most important part for BoF is how to represent dynamic information of actions in videos. Most of existing BoF methods consider the video as a spatio-temporal volume and describe neighboring 3D interest points as complex volumetric patches. To simplify these complex 3D methods, this paper proposes a novel method that builds BoF representation as a way to learn 2D interest points directly from video data. The basic idea of proposed method is to gather feature points not only from 2D xy spatial planes of traditional frames, but from the 2D time axis called spatio-temporal frame as well. Such spatial-temporal features are able to capture dynamic information from the action videos and are well-suited to recognize human actions without need of 3D extensions for the feature descriptors. The spatio-temporal BoF approach using SIFT and SURF feature descriptors obtains good recognition rates on a well-known actions recognition dataset. Compared with more sophisticated scheme of 3D based HoG/HoF descriptors, proposed method is easier to compute and simpler to understand.

A study on the Preconditions of Space Program Validation of Healthcare Architecture for Application of BIM Technology (병원건축의 BIM적용을 위한 공간프로그램유효성평가의 전제조건에 관한 연구)

  • Seong, Joonho;Kim, Khilchae
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.19 no.2
    • /
    • pp.19-30
    • /
    • 2013
  • Purpose: The planning and design of hospital generally requires the participation and consultation of skilled experts since it has more complex space program than any other buildings. Therefore, the BIM systems for the planning of hospital have been tried continuously. The purpose of this study is to identify the precondition for space Program validation of healthcare architecture based on BIM, which is recently receiving wide attention. Method: For this study, United States, Australia and Finland's guidelines were analyzed among the description space program validation system in 14 overseas BIM Guidelines. And the propose precondition that can be applied to healthcare architecture from among these description of space program validation items, target, process etc for General building. Result: 1) spatial program validation is the following four evaluation phase. Step 1: Standard setting phase Step 2: BIM model accuracy assessment phase Step 3: space validation phase Step 4: Performance evaluation phase 2) The standards for the building elements at Standards Setting stage is considered to the standards for the architectural elements of General building. 3) Healthcare Architecture Area calculation method is considered to be reasonable that borrowing the area calculation standard of general architecture according to the UIA of international standards. However, Be proposed of measuring method that reflect the efficiency of the design process step-by-step area calculation method. The performance assessment indicators of reflect the Hospital uniqueness have to developed. And the research needs to be carried out continuously according to the purpose for healthcare architecture of feature-oriented. Implications: In this paper like to understanding that precondition of space program validation considering the BIM. As a result, understanding to condition about step of the evaluation, the evaluation standards. Is expected to keep the focus on the development of performance indicators that reflect the uniqueness of the hospital for the efficient evaluation of the Hospital building.

Reconstructing Occluded Facial Components using Support Vector Data Description (지지 벡터 데이터 기술을 이용한 가려진 얼굴 요소 복원)

  • Kim, Kyoung-Ho;Chung, Yun-Su;Lee, Sang-Woong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.457-461
    • /
    • 2010
  • Even though face recognition researches have been developed for a long ago, there is no practical face recognition system in real life. It is caused by several real situations where non-facial components such as glasses, scarf, and hair occlude facial components while facial images in a face database are well designed. This occlusion decreases recognition performance. Previous approaches in recent years have tried to solve non-facial components but have not resulted in enough performance. In this paper, we propose a method to handle this problem based on support vector data description, which trains the hyperball in feature space to find the minimum distance estimating the approximated face. In order to evaluate its performance and validate the effectiveness of the proposed method, we make several experiments and the results show that the proposed method has a considerable effectiveness.

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

A Study on the Classroom Space Planning through User Participation Design - Focusing on the case of School Space Innovation Project in Incheon - (사용자 참여설계를 통한 교실공간계획에 관한 연구 - 인천광역시 학교공간 혁신사업 사례를 중심으로 -)

  • Son, Suk-Eui;Kim, Seung-Je
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.28 no.4
    • /
    • pp.11-17
    • /
    • 2021
  • This study is aimed at presenting an efficient management plan of user participatory design in a situation where the School Space Innovation Project is in progress. 2 schools that were the targets of the Incheon School Space Innovation Project in 2019 were selected for this, and features such as the physical environment of that classroom, classroom usage plan, and the stepwise outcome of the user participatory design workshop were contemplated. Especially the workshop outcome was compared and analyzed quantitatively, focusing on the actual master plan and zoning plan, in order to identify the feature that opinions of various users are reflected on the actual plan. As a result, the following conclusion could be reached. Firstly, it was confirmed that the expression about the user preferential space influences the classroom usage plan of that classroom. Vague expressions about the whole space held a large majority of the objects for the linguistic expression of the preferential space. The expression mode as limited as the expression of the actions that users want to carry out in the space. On the other hand, when the usage purpose of the classroom was definite, it was confirmed that the demand for furniture·facility is relatively high. Secondly, according to the analysis of zoning for each function, it seems that the stereotype, which is arranged on the basis of the chalkboard at the front of existing classrooms, was applied in the case of the learning zone. However, in cases of other functions, a tendency was identified that the user carries out an image description that reflects the physical features of the space. Sufficient preparation will need to precede for the efficient management of the user participatory design workshop and the acceptance of various opinions. It seems that especially the classroom usage plan, number of workshops, consultation of each step, and the education about the space expression mode affect the master plan.

Development of Java/VRML-based 3D GIS's Framework and Its Prototype Model (Java/VRML기반 3차원 GIS의 기본 구조와 프로토타입 모델 개발)

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.11-17
    • /
    • 1998
  • Recently, 3D GIS based on 3D geo-processing methodology and Internet environment are emerging issues in GIS fields. To design and implement 3D GIS, the strategic linkage of Java and VRML is first regarded: 3D feature format definition in the passion of conventional GIS including aspatial attributes, 3B feature indexing, 3D analytical operators such as selection, buffering, and Near, Metric operation such as distance measurement and statistical description, and 3D visualization. In 3D feature format definition, the following aspects are implemented: spatial information for 3D primitives extended from 2D primitives, multimedia data, object texture or color of VRML specification. DXF-format GIS layers with additional attributes are converted to 3D feature format and imported into this system. While, 3D analytical operators are realized in the form of 3D buffering with respect to user-defined point, line, polygon, and 3D objects, and 3D Near functions; furthermore, 'Lantern operator' is newly introduced in this 3D GIS. Because this system is implemented by Java applet, any client with Java-enable browser including VRML browser plug-in can utilize the new style of 3D GIS function in the virtual space. Conclusively, we present prototype of WWW-based 3D GIS, and this approach will be contribute to development of core modules on the stage of concept establishment and of real application model in future.

  • PDF

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF

A Dominant Feature based Nomalization and Relational Description of Shape Signature for Scale/Rotational Robustness (2차원 형상 변화에 강건한 지배적 특징 기반 형상 시그너쳐의 정규화 및 관계 특징 기술)

  • Song, Ho-Geun;Koo, Ha-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.103-111
    • /
    • 2011
  • In this paper, we propose a Geometrical Centroid Contour Distance(GCCD) which is described by shape signature based on contour sequence. The proposed method uses geomertrical relation features instead of the absolute angle based features after it was normalized and aligned with dominant feature of the shape. Experimental result with MPEG-7 CE-Shape-1 Data Set reveals that our method has low time/spatial complexity and scale/rotation robustness than the other methods, showing that the precision of our method is more accurate than the conventional desctiptors. However, performance of the GCCD is limited with concave and complex shaped objects.