• 제목/요약/키워드: Feature Concept Dictionaries

검색결과 3건 처리시간 0.024초

S-100 표준 등록소 구축 및 활용기술 연구

  • 최현수;오세웅;황선필
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.314-316
    • /
    • 2016
  • 본 연구에서는 IHO에서 발표한 S-100 표준에 맞춰 Feature Catalogue Builder의 고도화와 S-100 표준 등록소를 개발하였다. 기존의 S-57 기반에서는 Object, Attribute와 도메인의 효율적인 관리가 어려웠으나, S-100 기반의 시스템에서는 새로운 Item의 제안과 검토, 승인 절차 등이 표준화가 되어있어 보다 효과적인 관리가 가능할 것으로 예측된다.

  • PDF

용어 사전의 특성이 문서 분류 정확도에 미치는 영향 연구 (Analyzing the Effect of Characteristics of Dictionary on the Accuracy of Document Classifiers)

  • 정해강;김남규
    • 경영과정보연구
    • /
    • 제37권4호
    • /
    • pp.41-62
    • /
    • 2018
  • 다양한 소셜 미디어 활동과 인터넷 뉴스 기사, 블로그 등을 통해 유통되는 비정형 데이터의 양이 급증함에 따라 비정형 데이터를 분석하고 활용하기 위한 연구가 활발히 진행되고 있다. 텍스트 분석은 주로 특정 도메인 또는 특정 주제에 대해 수행되므로, 도메인별 용어 사전의 구축과 적용에 대한 중요성이 더욱 강조되고 있다. 용어 사전의 품질은 비정형 데이터 분석 결과의 품질에 직접적인 영향을 미치게 되며, 분석 과정에서 정제의 역할을 수행함으로써 분석의 관점을 정의한다는 측면에서 그 중요성이 더욱 강조된다. 이렇듯 용어 사전의 중요성은 기존의 많은 연구에서도 강조되어 왔으나, 용어 사전이 분석 결과의 품질에 어떤 방식으로 어떤 영향을 미치는지에 대한 엄밀한 분석은 충분히 이루어지지 않았다. 따라서 본 연구에서는 전체 문서에서의 용어 빈도수에 기반을 두어 사전을 구축하는 일괄 구축 방식, 카테고리별 주요 용어를 추출하여 통합하는 용어 통합 방식, 그리고 카테고리별 주요 특질(Feature)을 추출하여 통합하는 특질 통합 방식의 세 가지 방식으로 사전을 구축하고 각 사전의 품질을 비교한다. 품질을 간접적으로 평가하기 위해 각 사전을 적용한 문서 분류의 정확도를 비교하고, 각 사전에 고유율의 개념을 도입하여 정확도의 차이가 나타나는 원인을 심층 분석한다. 본 연구의 실험에서는 5개 카테고리의 뉴스 기사 총 39,800건을 분석하였다. 실험 결과를 심층 분석한 결과 문서 분류의 정확도가 높게 나타나는 사전의 고유율이 높게 나타남을 확인하였으며, 이를 통해 사전의 고유율을 높임으로써 분류의 정확도를 더욱 향상시킬 수 있는 가능성을 발견하였다.

주제 균형 지능형 텍스트 요약 기법 (Subject-Balanced Intelligent Text Summarization Scheme)

  • 윤여일;고은정;김남규
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.141-166
    • /
    • 2019
  • 최근 다양한 매체를 통해 생성되는 방대한 양의 텍스트 데이터를 효율적으로 관리 및 활용하기 위한 방안으로써 문서 요약에 대한 연구가 활발히 진행되고 있다. 특히 최근에는 기계 학습 및 인공 지능을 활용하여 객관적이고 효율적으로 요약문을 도출하기 위한 다양한 자동 요약 기법이(Automatic Summarization) 고안되고 있다. 하지만 현재까지 제안된 대부분의 텍스트 자동 요약 기법들은 원문에서 나타난 내용의 분포에 따라 요약문의 내용이 구성되는 방식을 따르며, 이와 같은 방식은 비중이 낮은 주제(Subject), 즉 원문 내에서 언급 빈도가 낮은 주제에 대한 내용이 요약문에 포함되기 어렵다는 한계를 갖고 있다. 본 논문에서는 이러한 한계를 극복하기 위해 저빈도 주제의 누락을 최소화하는 문서 자동 요약 기법을 제안한다. 구체적으로 본 연구에서는 (i) 원문에 포함된 다양한 주제를 식별하고 주제별 대표 용어를 선정한 뒤 워드 임베딩을 통해 주제별 용어 사전을 생성하고, (ii) 원문의 각 문장이 다양한 주제에 대응되는 정도를 파악하고, (iii) 문장을 주제별로 분할한 후 각 주제에 해당하는 문장들의 유사도를 계산한 뒤, (iv) 요약문 내 내용의 중복을 최소화하면서도 원문의 다양한 내용을 최대한 포함할 수 있는 자동적인 문서 요약 기법을 제시한다. 제안 방법론의 평가를 위해 TripAdvisor의 리뷰 50,000건으로부터 용어 사전을 구축하고, 리뷰 23,087건에 대한 요약 실험을 수행한 뒤 기존의 단순 빈도 기반의 요약문과 주제별 분포의 비교를 진행하였다. 실험 결과 제안 방법론에 따른 문서 자동 요약을 통해 원문 내각 주제의 균형을 유지하는 요약문을 도출할 수 있음을 확인하였다.