• 제목/요약/키워드: Feature Classification

검색결과 2,187건 처리시간 0.037초

국토변화탐지를 위한 지형분류체계 개선안 (Proposal of Feature Classification System for Land Change Detection)

  • 박준구;노명종;조우석;방기인
    • 대한공간정보학회지
    • /
    • 제19권2호
    • /
    • pp.9-17
    • /
    • 2011
  • 국내 여러 기관에서 토지피복분류체계, 토지이용현황분류체계 등 국토의 정확한 현황 파악을 위해 다양한 지형분류체계를 활용 중에 있다. 그러나 이러한 분류체계로 국토변화를 탐지하기에는 적용성이 떨어지며, 변화지역을 추출하기에도 적합하지 않다는 문제점을 가지고 있다. 본 연구에서는 국토에 대한 자연적, 인위적 변화요소들을 모두 효과적으로 나타낼 수 있는 표준 지형분류체계를 제안하고자 한다. 이를 위해 국내외 유사 지형분류체계에 대한 비교 분석을 수행하고, 이를 바탕으로 표준 지형분류 항목을 제안하였다. 자동 지형분류 적용 가능성을 평가하기 위하여 감독분류 기반의 자동 지형분류와 선행지식 기반의 자동 지형분류를 수행하여 정확도를 평가하였다.

다중 클래스 분포 문제에 대한 분류 정확도 분석 (Analysis of Classification Accuracy for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.190-193
    • /
    • 2000
  • In this paper, we investigate the distribution of classification accuracies of multiclass problems in the feature space and analyze performances of the conventional feature extraction algorithms. In order to find the distribution of classification accuracies, we sample the feature space and compute the classification accuracy corresponding to each sampling point. Experimental results showed that there exist much better feature sets that the conventional feature extraction algorithms fail to find. In addition, the distribution of classification accuracies is useful for developing and evaluating the feature extraction algorithm.

  • PDF

Development of Feature-based Classification Software for High Resolution Satellite Imager

  • Jeong, Soo;Kim, Kyung-Ok;Jeong, Sang-Yong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1111-1113
    • /
    • 2003
  • In this paper, we investigated a method for feature - based classification to develop software which is suitable to the classification of high resolution satellite imagery . So, we developed related algorithm and designed user interfaces of convenience, considering various elements require for the feature - based classification. The software was tested with eCognition software which is unique commercial software for feature - based classification.

  • PDF

A Feature Selection-based Ensemble Method for Arrhythmia Classification

  • Namsrai, Erdenetuya;Munkhdalai, Tsendsuren;Li, Meijing;Shin, Jung-Hoon;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.

문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구 (Improving the Performance of a Fast Text Classifier with Document-side Feature Selection)

  • 이재윤
    • 정보관리연구
    • /
    • 제36권4호
    • /
    • pp.51-69
    • /
    • 2005
  • 문서분류에 있어서 분류속도의 향상이 중요한 연구과제가 되고 있다. 최근 개발된 자질값투표 기법은 문서자동분류 문제에 대해서 매우 빠른 속도를 가졌지만, 분류정확도는 만족스럽지 못하다. 이 논문에서는 새로운 자질선정 기법인 문서측 자질선정 기법을 제안하고, 이를 자질값투표 기법에 적용해 보았다. 문서측 자질선정은 일반적인 분류자질선정과 달리 학습집단이 아닌 분류대상 문서의 자질 중 일부만을 선택하여 분류에 이용하는 방식이다. 문서측 자질선정을 적용한 실험에서는, 간단하고 빠른 자질값투표 분류기로 SVM 분류기만큼 좋은 성능을 얻을 수 있었다.

가우시안 분포의 다중클래스 데이터에 대한 최적 피춰추출 방법 (Optimal feature extraction for normally distributed multicall data)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1263-1266
    • /
    • 1998
  • In this paper, we propose an optimal feature extraction method for normally distributed multiclass data. We search the whole feature space to find a set of features that give the smallest classification error for the Gaussian ML classifier. Initially, we start with an arbitrary feature vector. Assuming that the feature vector is used for classification, we compute the classification error. Then we move the feature vector slightly and compute the classification error with this vector. Finally we update the feature vector such that the classification error decreases most rapidly. This procedure is done by taking gradient. Alternatively, the initial vector can be those found by conventional feature extraction algorithms. We propose two search methods, sequential search and global search. Experiment results show that the proposed method compares favorably with the conventional feature extraction methods.

  • PDF

고해상도 위성영상의 분류를 위한 형상 기반 분류 소프트웨어 개발 (Development of Feature-based Classification Software for High Resolution Satellite Imagery)

  • 정수;이창노
    • 대한공간정보학회지
    • /
    • 제12권2호
    • /
    • pp.53-59
    • /
    • 2004
  • 본 연구에서는 고해상도 위성영상의 분류에 적합한 형상 기반 분류 소프트웨어를 개발하기 위한 연구를 수행하였다. 형상 기반 분류에 필요한 영상분할과 퍼지 기반의 분류 알고리즘을 개발하고, 형상 기반 분류에 요구되는 다양한 요소들을 고려하여 사용자와의 원활한 상호작용을 지원하기 위한 사용자 인터페이스를 구현하였다. 개발된 소프트웨어의 성능을 평가하고자 본 연구에서 개발된 소프트웨어와 현재 전 세계적으로 널리 보급되고 있는 형상 기반 분류 관련 상용 소프트웨어인 eCognition을 적용하여 동일한 영상을 시험적으로 처리해 본 결과 유사한 영상 분류결과를 얻을 수 있었다. 영상분할의 경우에는 본 연구에서 개발한 소프트웨어의 처리속도가 우수하였다. 형상 기반 분류를 수행하는 데에는 프로그램과 사용자간의 고도의 상호작용이 요구되므로, 향후에 이를 편리하게 하기 위한 사용자 인터페이스의 보완이 필요하다는 것을 알 수 있었다.

  • PDF

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

특징 래핑을 통한 숫자형 특징과 범주형 특징이 혼합된 데이터의 클래스 분류 성능 향상 기법 (Improving Classification Performance for Data with Numeric and Categorical Attributes Using Feature Wrapping)

  • 이재성;김대원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1024-1027
    • /
    • 2009
  • 본 논문에서는 혼합형 데이터에 대한 특징 선별 기법의 효율성을 비교하기 위해 특징 필터링과 특징 래핑을 통한 특징 선별 후, 클래스 분류 성능을 측정하였다. 혼합형 데이터는 숫자형 특징과 범주형 특징이 함께 혼합되어 있으므로, 숫자형 특징을 범주형 특징으로 이산화를 하여 단일형 데이터로 변환한 뒤 특징 선별 기법 등을 적용할 수 있다. 본 연구에서는 혼합형 데이터를 전처리하여 단일형 데이터로 변환하고, 널리 활용되는 특징 필터링 기법과 특징 래핑 기법을 통해 클래스 분류 성능을 높일 수 있는 특징 집합을 선별하였다. 선별된 특징 집합을 통한 클래스 분류 성능을 비교한 결과, 특징 필터링에 비해 특징 래핑을 통해 선별한 특징 집합을 활용하여 클래스 분류를 하였을 때 분류 정확도가 높은 것을 확인할 수 있었다.

Feature Selection Algorithm for Intrusions Detection System using Sequential Forward Search and Random Forest Classifier

  • Lee, Jinlee;Park, Dooho;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.5132-5148
    • /
    • 2017
  • Cyber attacks are evolving commensurate with recent developments in information security technology. Intrusion detection systems collect various types of data from computers and networks to detect security threats and analyze the attack information. The large amount of data examined make the large number of computations and low detection rates problematic. Feature selection is expected to improve the classification performance and provide faster and more cost-effective results. Despite the various feature selection studies conducted for intrusion detection systems, it is difficult to automate feature selection because it is based on the knowledge of security experts. This paper proposes a feature selection technique to overcome the performance problems of intrusion detection systems. Focusing on feature selection, the first phase of the proposed system aims at constructing a feature subset using a sequential forward floating search (SFFS) to downsize the dimension of the variables. The second phase constructs a classification model with the selected feature subset using a random forest classifier (RFC) and evaluates the classification accuracy. Experiments were conducted with the NSL-KDD dataset using SFFS-RF, and the results indicated that feature selection techniques are a necessary preprocessing step to improve the overall system performance in systems that handle large datasets. They also verified that SFFS-RF could be used for data classification. In conclusion, SFFS-RF could be the key to improving the classification model performance in machine learning.