• Title/Summary/Keyword: Feature Brightness

Search Result 121, Processing Time 0.019 seconds

Vehicle Tracking using Sequential Monte Carlo Filter (순차적인 몬테카를로 필터를 사용한 차량 추적)

  • Lee, Won-Ju;Yun, Chang-Yong;Kim, Eun-Tae;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.434-436
    • /
    • 2006
  • In a visual driver-assistance system, separating moving objects from fixed objects are an important problem to maintain multiple hypothesis for the state. Color and edge-based tracker can often be "distracted" causing them to track the wrong object. Many researchers have dealt with this problem by using multiple features, as it is unlikely that all will be distracted at the same time. In this paper, we improve the accuracy and robustness of real-time tracking by combining a color histogram feature with a brightness of Optical Flow-based feature under a Sequential Monte Carlo framework. And it is also excepted from Tracking as time goes on, reducing density by Adaptive Particles Number in case of the fixed object. This new framework makes two main contributions. The one is about the prediction framework which separating moving objects from fixed objects and the other is about measurement framework to get a information from the visual data under a partial occlusion.

  • PDF

Morphological Detection of Carotid Intima-Media Region for Fully Automated Thickness Measurement by Ultrasonogram

  • Park, Hyun Jun;Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.250-255
    • /
    • 2017
  • In this paper, we propose a method of detecting the region for measuring intima-media thickness (IMT). The existing methods for IMT measurement are automatic, but the region used for measuring IMT is not detected automatically but often set by the user. Therefore, research on detecting the intima-media region is needed for fully automated IMT measurement. The proposed method uses a morphological feature of the carotid artery visible as two long high-brightness horizontal lines at the upper and lower parts. It uses Gaussian blurring, ends-in search stretching, color quantization using a color-importance-based self-organizing map, and morphological operations to emphasize and to detect the morphological feature. The experimental results for evaluating the performance of the proposed method showed a 97.25% (106/109) success rate. Therefore, the proposed method can be used to develop a fully automated IMT measurement system.

Pose alignment control of robot using polygonal approximated gripper images (다각 근사화된 그리퍼 영상을 이용한 로봇의 위치 정렬)

  • Park, Kwang-Ho;Kim, Nam-Seong;Kee, Seok-Ho;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.559-563
    • /
    • 2000
  • In this paper we describe a method for aligning a robot gripper using image information. The region of gripper is represented from HSI color model that has major advantage of brightness independence. In order to extract the feature points for vision based position control, we find the corners of gripper shape using polygonal approximation method which determines the segment size and curvature of each points. We apply the vision based scheme to the task of alignment of gripper to reach the desired position by 2 RGB cameras. Experiments are carried out to exhibit the effectiveness of vision based control using feature points from polygonal approximation of gripper.

  • PDF

Image Retrieval using VQ based Local Modified Gabor Feature (변형된 지역 Gabor Feature를 이용한 VQ 기반의 영상 검색)

  • Shin, Dae-Kyu;Kim, Hyun-Sool;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2634-2636
    • /
    • 2001
  • This paper proposes a new method of retrieving images from large image databases. The method is based on VQ(Vector Quantization) of local texture information at interest points automatically detected in an image. The texture features are extracted by Gabor wavelet filter bank, and rearranged for rotation. These features are classified by VQ and then construct a pattern histogram. Retrievals are performed by just comparing pattern histograms between images. Experimental results have shown the robustness of the proposed method to image rotation, small scale change, noise addition and brightness change and also shown the possibility of the retrieval by a partial image.

  • PDF

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Ground Target Classification Algorithm based on Multi-Sensor Images (다중센서 영상 기반의 지상 표적 분류 알고리즘)

  • Lee, Eun-Young;Gu, Eun-Hye;Lee, Hee-Yul;Cho, Woong-Ho;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • This paper proposes ground target classification algorithm based on decision fusion and feature extraction method using multi-sensor images. The decisions obtained from the individual classifiers are fused by applying a weighted voting method to improve target recognition rate. For classifying the targets belong to the individual sensors images, features robust to scale and rotation are extracted using the difference of brightness of CM images obtained from CCD image and the boundary similarity and the width ratio between the vehicle body and turret of target in FLIR image. Finally, we verity the performance of proposed ground target classification algorithm and feature extraction method by the experimentation.

Development of Digital Leaf Authoring Tool for Virtual Landscape Production (가상 조경 생성을위한 디지털 잎 저작도구 개발)

  • Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • This study proposes a method of developing authoring tool that can easily and intuitively generate diverse digital leaves that compose virtual landscape. The main system of the proposed authoring tool consists of deformation method for the contour of leaf blade based on image warping, procedural modeling of leaf vein and visualization method based on mathematical model that expresses the color and brightness of leaves. First, the proposed authoring tool receives leaf input image and searches for contour information on the leaf blades. It then designs leaf blade deformation method that can generate diverse shapes of leaf blades in an intuitive structure using feature-based image warping. Based on the computed leaf blade contour, the system implements the generalized procedural modeling method suitable for the authoring tool that generates natural vein patterns appropriate for the leaf blade shape. Finally, the system applies visualization function that can express color and brightness of leaves and their changes over time using a mathematical model based on convolution sums of divisor functions. This paper provides texture support function so that the digital leaves that were generated using the proposed authoring tool can be used in a variety of three-dimensional digital contents field.

Development of Real Time and Robust Feature Extraction Algorithm of Watermelon for Tele-robotic Operation (원격 로봇작업을 위한 실시간 수박 형상 추출 알고리즘)

  • Kim, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.71-78
    • /
    • 2004
  • Real time and robust algorithm to extract the features of watermelon was developed from the remotely transmitted image of the watermelon. Features of the watermelon at the cultivation site such as size and shape including position are crucial to the successful tole-robotic operation and development of the cultivation data base. Algorithm was developed based on the concept of task sharing between the computer and the operator utilizing man-computer interface. Task sharing was performed based on the functional characteristics of human and computer. Identifying watermelon from the image transmitted from the cultivation site is very difficult because of the variable light condition and the complex image contents such as soil, mulching vinyl, straws on the ground, irregular leaves and stems. Utilizing operator's teaching through the touch screen mounted on the image monitor, the complex time consuming image processing process and instability of processing results in the watermelon identification has been avoided. Color and brightness characteristics were analyzed from the image area specified by the operator's teaching. Watermelon segmentation was performed using the brightness and color distribution of the specified imae processing area. Modified general Hough transform was developed to extract the shape, major and minor axes, and the position, of the watermelon. It took less than 100 msec of the image processing time, and was a lot faster than conventional approach. The proposed method showed the robustness and practicability in identifying watermelon from the wireless transmitted color image of the cultivation site.

The Verification of Image Merging for Lumber Scanning System (제재목 화상입력시스템의 화상병합 성능 검증)

  • Kim, Byung Nam;Kim, Kwang Mo;Shim, Kug-Bo;Lee, Hyoung Woo;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.556-565
    • /
    • 2009
  • Automated visual grading system of lumber needs correct input image. In order to create a correct image of domestic red pine lumber 3.6 m long feeding on a conveyer, part images were captured using area sensor and template matching algorithm was applied to merge part images. Two kinds of template matching algorithms and six kinds of template sizes were adopted in this operation. Feature extracted method appeared to have more excellent image merging performance than fixed template method. Error length was attributed to a decline of similarity related by difference of partial brightness on a part image, specific pattern and template size. The mismatch part was repetitively generated at the long grain. The best size of template for image merging was $100{\times}100$ pixels. In a further study, assignment of exact template size, preprocessing of image merging for reduction of brightness difference will be needed to improve image merging.