• Title/Summary/Keyword: Feature Based Stereo Matching

Search Result 84, Processing Time 0.022 seconds

Confidence Measure of Depth Map for Outdoor RGB+D Database (야외 RGB+D 데이터베이스 구축을 위한 깊이 영상 신뢰도 측정 기법)

  • Park, Jaekwang;Kim, Sunok;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1647-1658
    • /
    • 2016
  • RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.

An Illumination-Insensitive Stereo Matching Scheme Based on Weighted Mutual Information (조명 변화에 강인한 상호 정보량 기반 스테레오 정합 기법)

  • Heo, Yong Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2271-2283
    • /
    • 2015
  • In this paper, we propose a method which infers an accurate disparity map for radiometrically varying stereo images. For this end, firstly, we transform the input color images to the log-chromaticity color space from which a linear relationship can be established during constructing a joint pdf between input stereo images. Based on this linear property, we present a new stereo matching cost by combining weighted mutual information and the SIFT (Scale Invariant Feature Transform) descriptor with segment-based plane-fitting constraints to robustly find correspondences for stereo image pairs which undergo radiometric variations. Experimental results show that our method outperforms previous methods and produces accurate disparity maps even for stereo images with severe radiometric differences.

A New Stereo Matching Algorithm based on Variable Windows using Frequency Information in DWT Domain (DWT 영역에서의 주파수 정보를 활용한 가변 윈도우 기반의 스테레오 정합 알고리즘)

  • Seo, Young-Ho;Koo, Ja-Myung;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1437-1446
    • /
    • 2012
  • In this paper we propose a new stereo matching algorithm which is suitable for application to obtain depth information with high-speed in stereoscopic camera environment. For satisfying these condition we propose a new adaptive stereo matching technique using frequency information in discrete wavelet (DWT) domain and variable matching window. The size of the matching window is selected by analysis of the local property of the image in spatial domain and the feature and scaling factor of the matching window is selected by the frequency property in the frequency domain. For using frequency information we use local DWT and global DWT. We identified that the proposed technique has better peak noise to signal ratio (PSNR) than the fixed matching techniques with similar complexity.

Recovering the Elevation Map by Stereo Modeling of the Aerial Image Sequence (연속 항공영상의 스테레오 모델링에 의한 지형 복원)

  • 강민석;김준식;박래홍;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.64-75
    • /
    • 1993
  • This paper proposes a recovering technique of the elevation map by stereo modeling of the aerial image sequence which is transformed based on the aircraft situation. The area-based stereo matching method is simulated and the various parameters are experimentally chosen. In a depth extraction step, the depth is determined by solving the vector equation. The equation is suitable for stereo modeling of aerial images which do not satisfy the epipolar constraint. Also, the performance of the conventional feature-based matching scheme is compared. Finally, techniques analyzing the accuracy of the recovered elevation map (REM) are described. The analysis includes the error estimation for both height and contour lines, where the accuracy is based on the measurements of deviations from the estimates obtained manually. The experimental results show the efficiency of the proposed technique.

  • PDF

Refinement of Disparity Map using the Rule-based Fusion of Area and Feature-based Matching Results

  • Um, Gi-Mun;Ahn, Chung-Hyun;Kim, Kyung-Ok;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.304-309
    • /
    • 1999
  • In this paper, we presents a new disparity map refinement algorithm using statistical characteristics of disparity map and edge information. The proposed algorithm generate a refined disparity map using disparity maps which are obtained from area and feature-based Stereo Matching by selecting a disparity value of edge point based on the statistics of both disparity maps. Experimental results on aerial stereo image show the better results than conventional fusion algorithms in the disparity error. This algorithm can be applied to the reconstruction of building image from the high resolution remote sensing data.

  • PDF

Post Processing to Reduce Wrong Matches in Stereo Matching

  • Park, Hee-Ju;Lee, Suk-Bae
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 2001
  • Although many kinds of stereo matching method have been developed in the field of computer vision and photogrammetry, wrong matches are not easy to avoid. This paper presents a new method to reduce wrong matches after matching, and experimental results are reported. The main idea is to analyze the histogram of the image attribute differences between each pair of image patches matched. Typical image attributes of image patch are the mean and the standard deviation of gray value for each image patch, but there could be other kinds of image attributes. Another idea is to check relative position among potential matches. This paper proposes to use Gaussian blunder filter to detect the suspicious pair of candidate match in relative position among neighboring candidate matches. If the suspicious candidate matches in image attribute difference or relative position are suppressed, then many wrong matches are removed, but minimizing the suppression of good matches. The proposed method is easy to implement, and also has potential to be applied as post processing after image matching for many kinds of matching methods such as area based matching, feature matching, relaxation matching, dynamic programming, and multi-channel image matching. Results show that the proposed method produces fewer wrong matches than before.

  • PDF

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

A Stereo Image Recognition-Based Method for measuring the volume of 3D Object (스테레오 영상 인식에 기반한 3D 물체의 부피계측방법)

  • Jeong, Yun-Su;Lee, Hae-Won;Kim, Jin-Seok;Won, Jong-Un
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.237-244
    • /
    • 2002
  • In this paper, we propose a stereo image recognition-based method for measuring the volume of the rectangular parallelepiped. The method measures the volume from two images captured with two CCD (charge coupled device) cameras by sequential processes such as ROI (region of interest) extraction, feature extraction, and stereo matching-based vortex recognition. The proposed method makes it possible to measure the volume of the 3D object at high speed because only a few features are used in the process of stereo matching. From experimental results, it is demonstrated that this method is very effective for measuring the volume of the rectangular parallelepiped at high speed.

Target Object Image Extraction from 3D Space using Stereo Cameras

  • Yoo, Chae-Gon;Jung, Chang-Sung;Hwang, Chi-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1678-1680
    • /
    • 2002
  • Stereo matching technique is used in many practical fields like satellite image analysis and computer vision. In this paper, we suggest a method to extract a target object image from a complicated background. For example, human face image can be extracted from random background. This method can be applied to computer vision such as security system, dressing simulation by use of extracted human face, 3D modeling, and security system. Many researches about stereo matching have been performed. Conventional approaches can be categorized into area-based and feature-based method. In this paper, we start from area-based method and apply area tracking using scanning window. Coarse depth information is used for area merging process using area searching data. Finally, we produce a target object image.

  • PDF

Height Estimation of the Flat-Rooftop Structures using Line-Based Stereo Matching (직선 기반 스테레오 정합을 이용한 평면 지붕 인공지물의 고도 정보 추출)

  • 최성한;엄기문;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.61-70
    • /
    • 1995
  • In this paper, the algorithm to extract the height of flat-rooftop structures in stereo aerial image is suggested with an assumption that location, orientation, focal length, and field of view of a camera are known. It can be adapted to stereo aerial or satellite images. For performing feature-based stereo matching, the line segments suitable to describe the shape of general buildings are chosen as the feature. This paper is composed of three categories;the first step is to extract edges of structures with the polygon extraction algorithm which utilizes the edge following method, the second step is to perform the line segment matching with the camera information, and the last step is to calculate the location of each matched line and to estimate heights. The stereo images used in experiments are not real but synthetic ones. The experiment shows good results.