• Title/Summary/Keyword: Feature Acquisition

Search Result 167, Processing Time 0.028 seconds

Triangular Mesh Generation using non-uniform 3D grids (Non-uniform 3D grid를 이용한 삼각형망 생성에 관한 연구)

  • 강의철;우혁제;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1283-1287
    • /
    • 2003
  • Reverse engineering technology refers to the process that creates a CAD model of an existing part using measuring devices. Recently, non-contact scanning devices have become more accurate and the speed of data acquisition has increased drastically. However, they generate thousands of points per second and various types of point data. Therefore. it becomes a important to handle the huge amount and various types of point data to generate a surface model efficiently. This paper proposes a new triangular mesh generation method using 3D grids. The geometric information of a part can be obtained from point cloud data by estimating normal values of the points. In our research, the non-uniform 3D grids are generated first for feature based data reduction based on the geometric information. Then, triangulation is performed with the reduced point data. The grid structure is efficiently used not only for neighbor point search that can speed up the mesh generation process but also for getting surface connectivity information to result in same topology surface with the point data. Through this integrated approach, it is possible to create surface models from scanned point data efficiently.

  • PDF

Acoustic Identification of Six Fish Species using an Artificial Neural Network (인공 신경망에 의한 6개 어종의 음향학적 식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • The objective of this study was to develop an artificial neural network (ANN) model for the acoustic identification of commercially important fish species in Korea. A broadband echo acquisition and processing system operating over the frequency range of 85-225 kHz was used to collect and process species-specific, time-frequency feature images from six fish species: black rockfish Sebastes schlegeli, black scraper Thamnaconus modesutus [K], chub mackerel Scomber japonicus, goldeye rockfish Sebastes thompsoni, konoshiro gizzard shad Konosirus punctatus and large yellow croaker Larimichthys crocea. An ANN classifier was developed to identify fish species acoustically on the basis of only 100 dimension time-frequency features extracted by the principal components analysis (PCA). The overall mean identification rate for the six fish species was 88.5%, with individual identification rates of 76.6% for black rockfish, 82.8% for black scraper, 93.8% for chub mackerel, 90.6% for goldeye rockfish, 96.9% for konoshiro gizzard shad and 90.6% for large yellow croaker, respectively. These results demonstrate that individual live fish in well-controlled environments can be identified accurately by the proposed ANN model.

Application of MALDI Tissue Imaging of Drugs and Metabolites: A New Frontier for Molecular Histology

  • Shanta, Selina Rahman;Kim, Young-Jun;Kim, Young-Hwan;Kim, Kwang-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.149-154
    • /
    • 2011
  • Matrix assisted laser desorption ionization (MALDI) mass spectrometry is commonly used to analyze biological molecules such as proteins, peptides and lipids from cells or tissue. Recently MALDI Imaging mass spectrometry (IMS) has been widely applied for the identification of different drugs and their metabolites in tissue. This special feature has made MALDI-MS a common choice for investigation of the molecular histology of pathological samples as well as an important alternative to other conventional imaging methods. The basic advantages of MALDI-IMS are its simple technique, rapid acquisition, increased sensitivity and most prominently, its capacity for direct tissue analysis without prior sample preparation. Moreover, with ms/ms analysis, it is possible to acquire structural information of known or unknown analytes directly from tissue sections. In recent years, MALDI-IMS has made enormous advances in the pathological field. Indeed, it is now possible to identify various changes in biological components due to disease states directly on tissue as well as to analyze the effect of treated drugs. In this review, we focus on the advantages of MALDI tissue imaging over traditional methods and highlight some motivating findings that are significant in pathological studies.

Detection Algorithm of Lenslet Array Spot Pattern for Acquisition of Laser Wavefront (레이저 파면 획득용 Lenslet Array 점 패턴 검출 알고리즘)

  • Lee, Jae-Il;Lee, Young-Cheol;Huh, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.110-119
    • /
    • 2005
  • In this paper, a new detection algorithm was proposed for finding the position of lenslet array spot pattern used to acquire laser wavefront. Based on the analysis of the required signal processing characteristics, we categorized into and designed four main signal processing functions. The proposed was designed in order to have robust feature against a variation of geometrical form of the spot and also implemented to have semi-automatic thresholding capability based on CCD noise analysis. For performance evaluation, we made qualitative and quantitative comparisons with Carvalho's algorithm which has been published in recent. In the given experimental spot images, the proposed could detect the spots which has 1/3 times lower than the least S/N of which Carvalho's can detect and could reach to a detection precision of 0.1 pixel at the S/N. In functional aspect, the proposed could separate all valid spots locally. From these results, the proposed could have a superior precision of location detection of spot pattern in wider S/N range.

Trajectory Generation of a Moving Object for a Mobile Robot in Predictable Environment

  • Jin, Tae-Seok;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Universal Quantification by Children (보편 양화사 (Universal Quantifier)에 대한 아동들의 해석 양상)

  • 강혜경
    • Language and Information
    • /
    • v.5 no.2
    • /
    • pp.39-55
    • /
    • 2001
  • This paper investigates the idiosyncratic understanding of universal quantifiers such as every, each or all by young children at the ages of 4 to 7, and argues that the phenomenon is explicable in terms of the maturation of both the cognitive system and the linguistic system. Evidence for this dual explanation comes from the fact that the visual input, a picture, plays a key role in determining the children's conceptual representation, suggesting the need for the central integration of visual and linguistic elements; and from the fact that a quantifier in the linguistic input has an intrinsic property, i.e. a <+focus> feature. I have tried to explain the nature of the cognitive factors in terms of the function of the central system, suggesting a modified form of Smith & Tsimpli's (1995) yersion of Fodor's (1983) modularity hypothesis. The categorial status of the quantifier in the children's interpretation is considered, focusing on the movement of that quantifier out of its own extended projection to FP. It is claimed that children initially treat quantifiers as modifiers, rather than functional heads, and that the phenomenon of quantifier spreading by children can be attributed to delay in the development of the relevant functional category, i.e., DP (or QP), in language acquisition.

  • PDF

Robot User Control System using Hand Gesture Recognizer (수신호 인식기를 이용한 로봇 사용자 제어 시스템)

  • Shon, Su-Won;Beh, Joung-Hoon;Yang, Cheol-Jong;Wang, Han;Ko, Han-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • This paper proposes a robot control human interface using Markov model (HMM) based hand signal recognizer. The command receiving humanoid robot sends webcam images to a client computer. The client computer then extracts the intended commanding hum n's hand motion descriptors. Upon the feature acquisition, the hand signal recognizer carries out the recognition procedure. The recognition result is then sent back to the robot for responsive actions. The system performance is evaluated by measuring the recognition of '48 hand signal set' which is created randomly using fundamental hand motion set. For isolated motion recognition, '48 hand signal set' shows 97.07% recognition rate while the 'baseline hand signal set' shows 92.4%. This result validates the proposed hand signal recognizer is indeed highly discernable. For the '48 hand signal set' connected motions, it shows 97.37% recognition rate. The relevant experiments demonstrate that the proposed system is promising for real world human-robot interface application.

A Study on the 3-dimensional feature measurement system for OMM using multiple-sensors (멀티센서 시스템을 이용한 3차원 형상의 기상측정에 관한 연구)

  • 권양훈;윤길상;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.158-163
    • /
    • 2002
  • This paper presents a multiple sensor system for rapid and high-precision coordinate data acquisition in the OMM (On-machine measurement) process. In this research, three sensors (touch probe, laser, and vision sensor) are integrated to obtain more accurate measuring results. The touch-type probe has high accuracy, but is time-consuming. Vision sensor can acquire many point data rapidly over a spatial range but its accuracy is less than other sensors. Also, it is not possible to acquire data for invisible areas. Laser sensor has medium accuracy and measuring speed among the sensors, and can acquire data for sharp or rounded edge and the features with very small holes and/or grooves. However, it has range- constraints to use because of its system structure. In this research, a new optimum sensor integration method for OMM is proposed by integrating the multiple-sensor to accomplish mote effective inspection planning. To verify the effectiveness of the proposed method, simulation and experimental works are performed, and the results are analyzed.

  • PDF

Application of a Deep Learning Method on Aerial Orthophotos to Extract Land Categories

  • Won, Taeyeon;Song, Junyoung;Lee, Byoungkil;Pyeon, Mu Wook;Sa, Jiwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.443-453
    • /
    • 2020
  • The automatic land category extraction method was proposed, and the accuracy was evaluated by learning the aerial photo characteristics by land category in the border area with various restrictions on the acquisition of geospatial data. As experimental data, this study used four years' worth of published aerial photos as well as serial cadastral maps from the same time period. In evaluating the results of land category extraction by learning features from different temporal and spatial ranges of aerial photos, it was found that land category extraction accuracy improved as the temporal and spatial ranges increased. Moreover, the greater the diversity and quantity of provided learning images, the less the results were affected by the quality of images at a specific time to be extracted, thus generally demonstrating accurate and practical land category feature extraction.

Induction Motor Diagnosis System by Effective Frequency Selection and Linear Discriminant Analysis (유효 주파수 선택과 선형판별분석기법을 이용한 유도전동기 고장진단 시스템)

  • Lee, Dae-Jong;Cho, Jae-Hoon;Yun, Jong-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.380-387
    • /
    • 2010
  • For the fault diagnosis of three-phase induction motors, we propose a diagnosis algorithm based on mutual information and linear discriminant analysis (LDA). The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by mutual information As the next step, feature extraction is performed by LDA, and then diagnosis is evaluated by k-NN classifier. The results to verify the usability of the proposed algorithm showed better performance than various conventional methods.