• 제목/요약/키워드: Feasibility and reliability of models

검색결과 34건 처리시간 0.023초

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.

Nonlinear static and dynamic analyses of reinforced concrete buildings - comparison of different modelling approaches

  • Carvalho, Goncalo;Bento, Rita;Bhatt, Carlos
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.451-470
    • /
    • 2013
  • It generally accepted that most building structures shall exhibit a nonlinear response when subjected to medium-high intensity earthquakes. It is currently known, however, that this phenomenon is not properly modelled in the majority of cases, especially at the design stage, where only simple linear methods have effectively been used. Recently, as a result of the exponential progress of computational tools, nonlinear modelling and analysis have gradually been brought to a more promising level. A wide range of modelling alternatives developed over the years is hence at the designer's disposal for the seismic design and assessment of engineering structures. The objective of the study presented herein is to test some of these models in an existing structure, and observe their performance in nonlinear static and dynamic analyses. This evaluation is done by the use of two of a known range of advanced computer programs: SAP2000 and SeismoStruct. The different models will focus on the element flexural mechanism with both lumped and distributed plasticity element models. In order to appraise the reliability and feasibility of each alternative, the programs capabilities and the amount of labour and time required for modelling and performing the analyses are also discussed. The results obtained show the difficulties that may be met, not only in performing nonlinear analyses, but also on their dependency on both the chosen nonlinear structural models and the adopted computer programs. It is then suggested that these procedures should only be used by experienced designers, provided that they are aware of these difficulties and with a critical stance towards the result of the analyses.

A new block assembly method for shipbuilding at sea

  • Zhang, Bilin;Boo, Seung-Hwan;Kim, Jin-Gyun
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.999-1016
    • /
    • 2015
  • In this paper, we introduce a new method for assembly of shipbuilding blocks at sea and present its feasibility focusing on structural safety. The core concept of this method is to assemble ship building blocks by use of bolting, gluing and welding techniques at sea without dock facilities. Due to its independence of dock facilities, shipyard construction capability could be increased considerably by the proposed method. To show the structural safety of this method, a bulk carrier and an oil tanker were employed, and we investigated the structural behavior of those ships to which the new block assembly method was applied. The ship hull models attached with connective parts are analyzed in detail through finite element analyses, and the cargo capacity of the bulk carrier is briefly discussed as well. The results of these studies show the potential for applying this new block assembly method to practical shipbuilding.

Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles

  • Sun, Yu-shan;Ran, Xiang-rui;Li, Yue-ming;Zhang, Guo-cheng;Zhang, Ying-hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권3호
    • /
    • pp.243-251
    • /
    • 2016
  • Autonomous Underwater Vehicles (AUVs) generally work in complex marine environments. Any fault in AUVs may cause significant losses. Thus, system reliability and automatic fault diagnosis are important. To address the actuator failure of AUVs, a fault diagnosis method based on the Gaussian particle filter is proposed in this study. Six free-space motion equation mathematical models are established in accordance with the actuator configuration of AUVs. The value of the control (moment) loss parameter is adopted on the basis of these models to represent underwater vehicle malfunction, and an actuator failure model is established. An improved Gaussian particle filtering algorithm is proposed and is used to estimate the AUV failure model and motion state. Bayes algorithm is employed to perform robot fault detection. The sliding window method is adopted for fault magnitude estimation. The feasibility and validity of the proposed method are verified through simulation experiments and experimental data.

Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing

  • Jung, Young-Eun;Ahn, Seong-Kyu;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.644-652
    • /
    • 2022
  • During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards of electrorefining operation was examined based on the use of machine learning for detecting off-normal operations. The off-normal operation, in this study, is defined as co-deposition of key elements through reduction on cathode. The monitored process signal selected for PM was cathode potential. The necessary data were produced through electrodeposition experiments in a laboratory molten salt system. Model-based cathodic surface area data were also generated and used to support model development. Computer models for classification were developed using a series of recurrent neural network architectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning to minimize data requirement for training. The resulting models were found to classify the normal and the off-normal operation states with a 95% accuracy. With the availability of more process data, the approach is expected to have higher reliability.

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

지반조사결과에서 설계변수의 결정문제 -지반특성치 산정을 중심으로- (Determination of Design Parameters from Ground Investigation Results -Focus on geotechnical characteristic values-)

  • 윤길림;윤여원;김홍연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.126-133
    • /
    • 2008
  • Geotechnical limit state design methods; LRFD of North America is an approach that estimates resistance using design model and then multiplies resistance factor by calculated resistance to reflect the uncertainty of geomaterials and design models; whereas, Eurocode of the Europe employs the partial resistance factor applied directly to each variable in the resistance equation that individual soil properties such as cohesion and angle of internal friction are applied. This discussion paper is a study on characteristic value which has globally been argued through processing of development of Eurocode 7 for geotechnical design even to the present. Estimating the characteristic value of soil properties affects not only determination of design value applied directly to design of geotechnical structures, but also economic feasibility and stability of the structures.

  • PDF

IMPROVING RELIABILITY OF BRIDGE DETERIORATION MODEL USING GENERATED MISSING CONDITION RATINGS

  • Jung Baeg Son;Jaeho Lee;Michael Blumenstein;Yew-Chaye Loo;Hong Guan;Kriengsak Panuwatwanich
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.700-706
    • /
    • 2009
  • Bridges are vital components of any road network which demand crucial and timely decision-making for Maintenance, Repair and Rehabilitation (MR&R) activities. Bridge Management Systems (BMSs) as a decision support system (DSS), have been developed since the early 1990's to assist in the management of a large bridge network. Historical condition ratings obtained from biennial bridge inspections are major resources for predicting future bridge deteriorations via BMSs. Available historical condition ratings in most bridge agencies, however, are very limited, and thus posing a major barrier for obtaining reliable future structural performances. To alleviate this problem, the verified Backward Prediction Model (BPM) technique has been developed to help generate missing historical condition ratings. This is achieved through establishing the correlation between known condition ratings and such non-bridge factors as climate and environmental conditions, traffic volumes and population growth. Such correlations can then be used to obtain the bridge condition ratings of the missing years. With the help of these generated datasets, the currently available bridge deterioration model can be utilized to more reliably forecast future bridge conditions. In this paper, the prediction accuracy based on 4 and 9 BPM-generated historical condition ratings as input data are compared, using deterministic and stochastic bridge deterioration models. The comparison outcomes indicate that the prediction error decreases as more historical condition ratings obtained. This implies that the BPM can be utilised to generate unavailable historical data, which is crucial for bridge deterioration models to achieve more accurate prediction results. Nevertheless, there are considerable limitations in the existing bridge deterioration models. Thus, further research is essential to improve the prediction accuracy of bridge deterioration models.

  • PDF

노출 모델의 화평법 적용성: ECETOC TRA와 Stoffenmanager Tier 1 노출 모델을 활용한 벤젠의 작업자 노출 평가 (Occupational Exposure Assessment for Benzene Using Exposure Models (ECETOC TRA and Stoffenmanager) and Applicability Evaluation of Exposure Models in K-REACH)

  • 문준식;옥정원;정욱현;나진성;김기태
    • 한국환경보건학회지
    • /
    • 제44권5호
    • /
    • pp.460-467
    • /
    • 2018
  • Objectives: The objectives of this study are to estimate the inhalation exposure level of benzene for workers using Tier 1 exposure models ECETOC TRA (European Center for Ecotoxicology and Toxicology of Chemicals Target Risk Assessment) and Stoffenmanager, and to investigate their reliability for exposure assessment in K-REACH. Methods: Two exposure scenarios, 'manufacture of benzene' and 'use as solvents,' were developed for assessment of workers' exposure to benzene. The Process Category (PROC) for ECETOC TRA was collected from the European Chemical Agency (ECHA) registration dossier, and the Activity for Stoffenmanager was converted from PROC using translation of exposure models (TREXMO). The information related to exposure, such as working duration, Respiratory Protective Equipment (RPE), Local Exhaust Ventilation (LEV), and Risk Management Measure (RMM) were classified into high, medium, and low exposure conditions. The risk was determined by the ratio of the estimated exposure and occupational exposure limits of benzene. Results: Under high exposure conditions, the worker exposure level calculated from all PROCs and Activities exceeded the risk level, with the exception of PROC 1 and Activity 1. In the medium exposure condition, PROC 8a, 8b, and 9 and Activity 3, 7, and 8 all exceeded the risk, whereas in the low condition, all PROCs and Activities were determined to be safe. As a result, action corresponding with the low exposure condition is required to reduce the risk of exposure among workers in workplaces where benzene is manufactured or used as a solvent. In addition, the predicted exposure levels derived from the exposure models were lower than measured levels. The exposure levels estimated from Stoffenmanager were more conservative than those from ECETOC TRA. Conclusions: This study demonstrates the feasibility of exposure models for exposure assessment through the example of occupational inhalation exposure assessment for benzene. For more active utilization of exposure models in K-REACH, the exact application of collected information and accurate interpretation of obtained results are necessary.

A Digitized Decoupled Dual-axis Micro Dynamically Tuned Gyroscope with Three Equilibrium Rings

  • Xia, Dunzhu;Ni, Peizhen;Kong, Lun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.385-395
    • /
    • 2017
  • A new digitized decoupled dual-axis micro dynamically tuned gyroscope with three equilibrium rings (TMDTG) is proposed which can eliminate the constant torque disturbance (CTD) caused by the double rotation frequency of a driving shaft with a micro dynamically tuned gyroscope with one equilibrium ring (MDTG). A mechanical and kinematic model of the TMDTG is theoretically analyzed and the structure parameters are optimized in ANSYS to demonstrate reliability. By adjusting the thickness of each equilibrium ring, the CTD can be eliminated. The digitized model of the TMDTG system is then simulated and examined using MATLAB. Finally, a digitized prototype based on FPGA is created. The gyroscope can be dynamically tuned by adjusting feedback voltage. Experimental results show the TMDTG has good performance with a scale factor of $283LSB/^{\circ}/s$ in X-axis and $220LSB/^{\circ}/s$ in Y-axis, respectively. The scale factor non-linearity is 0.09% in X-axis and 0.13% in Y-axis. Results from analytical models, simulations, and experiments demonstrate the feasibility of the proposed TMDTG.